This vignette, produced on 2017-05-04, documents the sources of thermodynamic data in CHNOSZ version 1.1.0.

The sections below correspond to CSV data files read by data(thermo). In each section, the primary references (ref1 in thermo$obigt) are listed in chronological order. Any secondary references (ref2) are listed with bullet points. Each reference is followed by the number of species, and a note (from thermo$refs). Symbols show whether the data were present in the earliest of the sprons92.dat (ø), slop98.dat (*), slop07.dat (†), or slop15.dat (‡) datafiles for the SUPCRT92 package.

Any additional comments are placed at the beginning of the sections. Abbreviations used below are: Cp (heat capacity), GHS (standard Gibbs energy, enthalpy, entropy), HKF (Helgeson-Kirkham-Flowers equations), V (volume).

Sources of data

Use the tabs below to select a section for viewing. Select “All at once” to show all sections.

Aqueous species

H2O (3)

This file contains H2O, e-, and H+. The properties of H2O are listed as NA; CHNOSZ calculates its properties using a Fortran subroutine taken from SUPRCT92 (Johnson et al., 1992). The properties of the proton (H+) are 0. The properties of the electron (e-) are 0, except for S°, which is the opposite of S° for the “element” of charge, Z (see ?thermo).

Inorganic (906)

Note: ZnCl4-2 was present in sprons92.dat but not in slop98.dat or later files, and is not included in CHNOSZ.

Shock and Helgeson (1988) – 59 ionic species (ø)

Shock et al. (1989) – 14 inorganic neutral species (ø)

Haas et al. (1995) – 249 complexes of rare earth elements (*)

  • slop98.dat – 88 “Corrected values based on data from Haas et al. (1995) (*)

McCollom and Shock (1997) – 3 MgSO4, NaSO4-, and HCl (*)

  • slop98.dat – 3 “Data and parameters as used by McCollom and Shock (1997).” (*)

Everett L. Shock, Sassani, and Betz (1997) – 15 uranium species (*)

Sverjensky et al. (1997) – 108 metal complexes (*)

  • slop15.dat – 1 Zn(Ac)3-: “Enthalpy changed to be compatible with the equation ΔH=ΔG+TΔS for the formation reaction from elements. See footnote h in table 2 of Sverjensky et al. (1997).” (‡)

  • CHNOSZ – 1 AuCl4- renamed to AuCl4-3

Everett L. Shock, Sassani, Willis, et al. (1997) – 252 inorganic ions and hydroxide complexes (*)

  • Sassani and Shock (1998) – 1 Rh+3 (*)

Sassani and Shock (1998) – 61 platinum-group ions and complexes (*)

Murphy and Shock (1999) – 38 actinides (†)

Schulte et al. (2001) – 10 AsH3, CF4, CH3F, Cl2, ClO2, N2O, NF3, NO, PH3, and SF6

Marini and Accornero (2007) – 52 metal-arsenate and metal-arsenite complexes

  • Marini and Accornero (2010) – 52 corrected values

Accornero et al. (2010) – 45 metal-chromate complexes

Organic (752)

Shock and Helgeson (1990) – 47 organic species (ø)

  • slop15.dat – 3 hexanol, heptanol, and octanol: “Minor differences in Gibbs energy, entropy, omega, a1, a2, a3, a4 and c1 values compared to Shock and Helgeson (1990).” (‡)

Shock (1992) – 4 diglycine, alanylglycine, leucylglycine, and diketopiperazine

  • CHNOSZ – 4 dipeptides not included in slop files after slop98.dat

Shock (1993) – 2 ethylacetate and acetamide (*)

Shock and Koretsky (1993) – 113 metal-acetate complexes (*)

  • slop15.dat – 32 “Enthalpy changed to be compatible with the equation ΔH=ΔG+TΔS for the formation reaction from elements.” (‡)

Shock and McKinnon (1993) – 3 CO, HCN, urea (*)

Schulte and Shock (1993) – 10 aldehydes (*)

  • slop15.dat – 1 formaldehyde: “Entropy corrected to be compatible with the equation ΔH=ΔG+TΔS for the formation reaction from elements. See footnote i in table 2 of Schulte and Shock (1993).” (‡)

Shock and Koretsky (1995) – 226 metal-organic acid complexes (*)

  • slop98.dat – 6 “These data were used in Shock and Koretsky (1995), but were not tabulated in the paper.” (*)

  • slop15.dat – 55 “Enthalpy corrected to be compatible with the equation ΔG=ΔH-TΔS for the formation reaction from elements.” (‡)

Shock and Koretsky (1995) – 54 alanate, glycinate and their complexes not included in later slop files. (*)

  • CHNOSZ – 2 alanate and glycinate: GHS as used by Dick et al. (2006)

  • CHNOSZ – 52 metal-amino acid complexes: GHS were recalculated by adding the differences between values from Amend and Helgeson (1997) and Dick et al. (2006) for alanate or glycinate to the properties of the complexes reported by Shock and Koretsky (1995).

Shock (1995) – 77 carboxylic acids (*)

  • slop15.dat – 2 adipic acid and n-dodecanoate: “Gibbs free energy corrected to be compatible with the equation ΔG=ΔH-TΔS for the formation reaction from elements. See footnote y in table 4 of Shock (1995).” (‡)

  • slop15.dat – 1 n-octanoate: “Enthalpy corrected to be compatible with the equation ΔG=ΔH-TΔS for the formation reaction from elements. See footnote ab in table 4 of Shock (1995).” (‡)

Dale et al. (1997) – 10 alkylphenols (*)

Haas and Shock (1999) – 6 chloroethylene species (†)

Prapaipong et al. (1999) – 162 metal-dicarboxylate complexes (†)

  • slop07.dat – 1 corrected charge of Pu(Oxal)+2 (†)

  • CHNOSZ – 4 charge of NpO2(Oxal), La(Succ)+, NH4(Succ)-, and NpO2(Succ) as listed by Prapaipong et al. (1999)

Plyasunov and Shock (2001) – 11 aqueous nonelectrolytes (†)

Schulte and Rogers (2004) – 12 alkane thiols (†)

Hawrylak et al. (2006) – 2 methyldiethanolamine and methyldiethanolammonium chloride HKF parameters

Schulte (2010) – 7 organic sulfides

Dick et al. (2013) – 6 phenanthrene and methylphenanthrene isomers

Biotic (302)

Amend and Helgeson (1997) – 29 amino acids GHS (†)

  • Dick et al. (2006) – 29 amino acids HKF parameters (†)

Amend and Plyasunov (2001) – 10 carbohydrates (†)

  • slop07.dat – 10 high-temperature HKF parameters from Amend and Plyasunov (2001) (†)

LaRowe and Harold C. Helgeson (2006a) – 138 nucleic-acid bases, nucleosides, and nucleotides (†)

LaRowe and Harold C. Helgeson (2006a) – 4 citric acid and citrate

  • Canovas and Shock (2016) – 4 citric acid species HKF a1–a4 parameters

LaRowe and Harold C. Helgeson (2006b) – 32 Mg-complexed adenosine nucleotides (ATP), NAD, and NADP (†)

Dick et al. (2006) – 40 amino acid, protein, and organic groups (‡)

  • LaRowe and Dick (2012) – 1 methionine sidechain GHS

  • CHNOSZ – 1 Incorrect values of HKF a1–a4 parameters for [-CH2NH2] were printed in Table 6 of Dick et al. (2006); corrected values are used here. (‡)

Dick et al. (2006) – 1 amino acids HKF parameters (†)

  • LaRowe and Dick (2012) – 1 methionine GHS (‡)

Dick et al. (2006) – 20 Gly-X-Gly tripeptides

Dick (2007) – 4 glutathione, cystine, and cystine sidechain

Canovas and Shock (2016) – 24 citric acid cycle metabolites

CHNOSZ (1)

The primary aqueous silica species in CHNSOZ is SiO2 (Shock et al., 1989). The pseudospecies H4SiO4 is used to make activity diagrams with aH4SiO4 as a variable. The GHS and HKF parameters for this pseudospecies were calculated using CHNOSZ; see the vignette Regressing thermodynamic data for more information.

CHNOSZ – 1 pseudo-H4SiO4

Solids

Inorganic (296)

Note: chamosite,7A and witherite were present in sprons92.dat but not in slop98.dat or later files, and are not included in CHNOSZ.

Note: parameters used here for goethite differ slightly from those listed in the slop files (Shock, 2009).

Helgeson et al. (1978) – 235 minerals and phase transitions (ø)

  • Kelley (1960) – 1 larnite Cp (ø)

  • Pankratz and King (1970) – 2 bornite and chalcopyrite (ø)

  • Robie et al. (1979) – 4 dickite, fluorphlogopite, halloysite, and pyrope (ø)

  • Plummer and Busenberg (1982) – 2 aragonite and calcite (ø)

  • Wagman et al. (1982) – 1 manganosite (ø)

  • Helgeson (1985) – 2 ferrosilite and siderite (ø)

  • sprons92.dat – 24 Ca-bearing minerals; “Gibbs free energies and enthalpies were corrected to be consistent with updated values of Gibbs free energies of Ca2+ and CO32- (Shock and Helgeson, 1988) together with the solubilities of calcite and aragonite reported by Plummer and Busenberg (1982) (ø)

  • slop98.dat – 1 daphnite; “Gf and Hf from Saccocia and Seyfried (1993) TMM” (*)

  • CHNOSZ – 68 GHS (Tr) of the phase that is stable at 298.15 K was combined with Htr and the Cp coefficients to calculate the metastable GHS (Tr) of the phases that are stable at higher temperatures.

Robie et al. (1979) – 3 chlorargyrite, rutile, and titanite (ø)

  • Pankratz (1970) – 1 chlorargyrite (ø)

  • Bowers and Helgeson (1983) – 1 rutile (ø)

  • sprons92.dat – 1 titanite: Bowers and Helgeson (1983) + “Gibbs free energies and enthalpies were corrected to be consistent with updated values of Gibbs free energies of Ca2+ and CO32- (Shock and Helgeson, 1988) together with the solubilities of calcite and aragonite reported by Plummer and Busenberg (1982) (ø)

Robie et al. (1979) – 4 iron (ø)

  • Kelley (1960) – 1 iron Cp (ø)

  • CHNOSZ – 3 GHS (Tr) of the phase that is stable at 298.15 K was combined with Htr and the Cp coefficients to calculate the metastable GHS (Tr) of the phases that are stable at higher temperatures.

Wagman et al. (1982) – 1 MgSO4

Jackson and Helgeson (1985) – 5 Sn minerals (ø)

  • CHNOSZ – 1 GHS (Tr) of the phase that is stable at 298.15 K was combined with Htr and the Cp coefficients to calculate the metastable GHS (Tr) of the phases that are stable at higher temperatures.

Parker and Khodakovskii (1995) – 1 melanterite

Robie and Hemingway (1995) – 1 gypsum GHS

  • Kelley (1960) – 1 gypsum Cp

McCollom and Shock (1997) – 3 sulfur (*)

  • slop98.dat – 3 “Data and parameters as used by McCollom and Shock (1997).” (*)

Everett L. Shock, Sassani, and Betz (1997) – 1 uraninite (*)

Everett L. Shock, Sassani, Willis, et al. (1997) – 2 zincite and litharge (*)

  • Helgeson et al. (1978) – 1 litharge S, V, and Cp parameters (ø)

  • slop98.dat – 1 zincite and litharge; “These data were used in Everett L. Shock, Sassani, Willis, et al. (1997), but were not tabulated in the paper.” (*)

Sassani and Shock (1998) – 15 platinum-group solids (*)

Stoffregen et al. (2000) – 3 jarosite, natroalunite, and natrojarosite

Amend and Shock (2001) – 3 selenium and molybdenite (†)

Mercury et al. (2001) – 8 ice polymorphs

Juraj Majzlan, Grevel, et al. (2003) – 3 goethite, lepidocrocite, and maghemite GHS

  • Juraj Majzlan, Lang, et al. (2003) – 3 goethite, lepidocrocite, and maghemite Cp

Majzlan et al. (2004) – 1 hydronium jarosite

Majzlan et al. (2006) – 3 coquimbite, ferricopiapite, and rhomboclase

Grevel and Majzlan (2009) – 4 kieserite, starkeyite, hexahydrite, and epsomite

Organic (479)

Tardy et al. (1997) – 5 humic acid, microflora, and plants

Helgeson et al. (1998) – 59 organic molecules and groups

Helgeson et al. (1998) – 20 amino acids (‡)

  • LaRowe and Dick (2012) – 4 updated and corrected parameters for cysteine, glycine, leucine, and methionine (‡)

Richard and Helgeson (1998) – 311 organic molecules and groups

Richard (2001) – 8 organic sulfur compounds

LaRowe and Harold C. Helgeson (2006a) – 19 nucleic-acid bases, nucleosides, and nucleotides

LaRowe and Harold C. Helgeson (2006b) – 9 Mg-complexed adenosine nucleotides (ATP), NAD, and NADP

Helgeson et al. (2009) – 5 kerogens

Richard and Gaona (2011) – 13 organic iodine compounds

LaRowe and Dick (2012) – 30 4-hydroxyproline, 5-hydroxylysine, 4 dipeptides, and sidechain and backbone groups in proteins (‡)

Liquids

Organic (532)

Helgeson et al. (1998) – 186 organic molecules and groups

Richard and Helgeson (1998) – 231 organic molecules and groups

Richard (2001) – 67 organic sulfur compounds

LaRowe and Harold C. Helgeson (2006b) – 2 pyridine and piperidine

Richard (2008) – 17 alkenes

Richard and Gaona (2011) – 29 organic iodine compounds

Gases

Inorganic (18)

Wagman et al. (1982) – 2 gases GHS (†)

  • Amend and Shock (2001) – 2 NO and N2O (†)

Wagman et al. (1982) – 15 gases GHS (ø)

  • Kelley (1960) – 15 gases Cp (ø)

Johnson (1992) – 1 steam, Cp represented by the Maier-Kelley equation (ø)

  • sprons92.dat – 1 “Parameters given provide smooth metastable extrapolation of one-bar steam properties predicted by the Haar et al. (1984) equation of state to temperatures < the saturation temperature (99.632 C).” (ø)

Organic (266)

Shock (1993) – 2 carbon monoxide and ethylene (*)

Dale et al. (1997) – 4 phenol, and cresol isomers (*)

Dale et al. (1997) – 6 dimethylphenol isomers

Helgeson et al. (1998) – 153 organic molecules and groups

Richard (2001) – 62 organic sulfur compounds

Richard and Gaona (2011) – 39 organic iodine compounds

All at once

Aqueous species

H2O (3)

This file contains H2O, e-, and H+. The properties of H2O are listed as NA; CHNOSZ calculates its properties using a Fortran subroutine taken from SUPRCT92 (Johnson et al., 1992). The properties of the proton (H+) are 0. The properties of the electron (e-) are 0, except for S°, which is the opposite of S° for the “element” of charge, Z (see ?thermo).

Inorganic (906)

Note: ZnCl4-2 was present in sprons92.dat but not in slop98.dat or later files, and is not included in CHNOSZ.

Shock and Helgeson (1988) – 59 ionic species (ø)

Shock et al. (1989) – 14 inorganic neutral species (ø)

Haas et al. (1995) – 249 complexes of rare earth elements (*)

  • slop98.dat – 88 “Corrected values based on data from Haas et al. (1995) (*)

McCollom and Shock (1997) – 3 MgSO4, NaSO4-, and HCl (*)

  • slop98.dat – 3 “Data and parameters as used by McCollom and Shock (1997).” (*)

Everett L. Shock, Sassani, and Betz (1997) – 15 uranium species (*)

Sverjensky et al. (1997) – 108 metal complexes (*)

  • slop15.dat – 1 Zn(Ac)3-: “Enthalpy changed to be compatible with the equation ΔH=ΔG+TΔS for the formation reaction from elements. See footnote h in table 2 of Sverjensky et al. (1997).” (‡)

  • CHNOSZ – 1 AuCl4- renamed to AuCl4-3

Everett L. Shock, Sassani, Willis, et al. (1997) – 252 inorganic ions and hydroxide complexes (*)

  • Sassani and Shock (1998) – 1 Rh+3 (*)

Sassani and Shock (1998) – 61 platinum-group ions and complexes (*)

Murphy and Shock (1999) – 38 actinides (†)

Schulte et al. (2001) – 10 AsH3, CF4, CH3F, Cl2, ClO2, N2O, NF3, NO, PH3, and SF6

Marini and Accornero (2007) – 52 metal-arsenate and metal-arsenite complexes

  • Marini and Accornero (2010) – 52 corrected values

Accornero et al. (2010) – 45 metal-chromate complexes

Organic (752)

Shock and Helgeson (1990) – 47 organic species (ø)

  • slop15.dat – 3 hexanol, heptanol, and octanol: “Minor differences in Gibbs energy, entropy, omega, a1, a2, a3, a4 and c1 values compared to Shock and Helgeson (1990).” (‡)

Shock (1992) – 4 diglycine, alanylglycine, leucylglycine, and diketopiperazine

  • CHNOSZ – 4 dipeptides not included in slop files after slop98.dat

Shock (1993) – 2 ethylacetate and acetamide (*)

Shock and Koretsky (1993) – 113 metal-acetate complexes (*)

  • slop15.dat – 32 “Enthalpy changed to be compatible with the equation ΔH=ΔG+TΔS for the formation reaction from elements.” (‡)

Shock and McKinnon (1993) – 3 CO, HCN, urea (*)

Schulte and Shock (1993) – 10 aldehydes (*)

  • slop15.dat – 1 formaldehyde: “Entropy corrected to be compatible with the equation ΔH=ΔG+TΔS for the formation reaction from elements. See footnote i in table 2 of Schulte and Shock (1993).” (‡)

Shock and Koretsky (1995) – 226 metal-organic acid complexes (*)

  • slop98.dat – 6 “These data were used in Shock and Koretsky (1995), but were not tabulated in the paper.” (*)

  • slop15.dat – 55 “Enthalpy corrected to be compatible with the equation ΔG=ΔH-TΔS for the formation reaction from elements.” (‡)

Shock and Koretsky (1995) – 54 alanate, glycinate and their complexes not included in later slop files. (*)

  • CHNOSZ – 2 alanate and glycinate: GHS as used by Dick et al. (2006)

  • CHNOSZ – 52 metal-amino acid complexes: GHS were recalculated by adding the differences between values from Amend and Helgeson (1997) and Dick et al. (2006) for alanate or glycinate to the properties of the complexes reported by Shock and Koretsky (1995).

Shock (1995) – 77 carboxylic acids (*)

  • slop15.dat – 2 adipic acid and n-dodecanoate: “Gibbs free energy corrected to be compatible with the equation ΔG=ΔH-TΔS for the formation reaction from elements. See footnote y in table 4 of Shock (1995).” (‡)

  • slop15.dat – 1 n-octanoate: “Enthalpy corrected to be compatible with the equation ΔG=ΔH-TΔS for the formation reaction from elements. See footnote ab in table 4 of Shock (1995).” (‡)

Dale et al. (1997) – 10 alkylphenols (*)

Haas and Shock (1999) – 6 chloroethylene species (†)

Prapaipong et al. (1999) – 162 metal-dicarboxylate complexes (†)

  • slop07.dat – 1 corrected charge of Pu(Oxal)+2 (†)

  • CHNOSZ – 4 charge of NpO2(Oxal), La(Succ)+, NH4(Succ)-, and NpO2(Succ) as listed by Prapaipong et al. (1999)

Plyasunov and Shock (2001) – 11 aqueous nonelectrolytes (†)

Schulte and Rogers (2004) – 12 alkane thiols (†)

Hawrylak et al. (2006) – 2 methyldiethanolamine and methyldiethanolammonium chloride HKF parameters

Schulte (2010) – 7 organic sulfides

Dick et al. (2013) – 6 phenanthrene and methylphenanthrene isomers

Biotic (302)

Amend and Helgeson (1997) – 29 amino acids GHS (†)

  • Dick et al. (2006) – 29 amino acids HKF parameters (†)

Amend and Plyasunov (2001) – 10 carbohydrates (†)

  • slop07.dat – 10 high-temperature HKF parameters from Amend and Plyasunov (2001) (†)

LaRowe and Harold C. Helgeson (2006a) – 138 nucleic-acid bases, nucleosides, and nucleotides (†)

LaRowe and Harold C. Helgeson (2006a) – 4 citric acid and citrate

  • Canovas and Shock (2016) – 4 citric acid species HKF a1–a4 parameters

LaRowe and Harold C. Helgeson (2006b) – 32 Mg-complexed adenosine nucleotides (ATP), NAD, and NADP (†)

Dick et al. (2006) – 40 amino acid, protein, and organic groups (‡)

  • LaRowe and Dick (2012) – 1 methionine sidechain GHS

  • CHNOSZ – 1 Incorrect values of HKF a1–a4 parameters for [-CH2NH2] were printed in Table 6 of Dick et al. (2006); corrected values are used here. (‡)

Dick et al. (2006) – 1 amino acids HKF parameters (†)

  • LaRowe and Dick (2012) – 1 methionine GHS (‡)

Dick et al. (2006) – 20 Gly-X-Gly tripeptides

Dick (2007) – 4 glutathione, cystine, and cystine sidechain

Canovas and Shock (2016) – 24 citric acid cycle metabolites

CHNOSZ (1)

The primary aqueous silica species in CHNSOZ is SiO2 (Shock et al., 1989). The pseudospecies H4SiO4 is used to make activity diagrams with aH4SiO4 as a variable. The GHS and HKF parameters for this pseudospecies were calculated using CHNOSZ; see the vignette Regressing thermodynamic data for more information.

CHNOSZ – 1 pseudo-H4SiO4

Solids

Inorganic (296)

Note: chamosite,7A and witherite were present in sprons92.dat but not in slop98.dat or later files, and are not included in CHNOSZ.

Note: parameters used here for goethite differ slightly from those listed in the slop files (Shock, 2009).

Helgeson et al. (1978) – 235 minerals and phase transitions (ø)

  • Kelley (1960) – 1 larnite Cp (ø)

  • Pankratz and King (1970) – 2 bornite and chalcopyrite (ø)

  • Robie et al. (1979) – 4 dickite, fluorphlogopite, halloysite, and pyrope (ø)

  • Plummer and Busenberg (1982) – 2 aragonite and calcite (ø)

  • Wagman et al. (1982) – 1 manganosite (ø)

  • Helgeson (1985) – 2 ferrosilite and siderite (ø)

  • sprons92.dat – 24 Ca-bearing minerals; “Gibbs free energies and enthalpies were corrected to be consistent with updated values of Gibbs free energies of Ca2+ and CO32- (Shock and Helgeson, 1988) together with the solubilities of calcite and aragonite reported by Plummer and Busenberg (1982) (ø)

  • slop98.dat – 1 daphnite; “Gf and Hf from Saccocia and Seyfried (1993) TMM” (*)

  • CHNOSZ – 68 GHS (Tr) of the phase that is stable at 298.15 K was combined with Htr and the Cp coefficients to calculate the metastable GHS (Tr) of the phases that are stable at higher temperatures.

Robie et al. (1979) – 3 chlorargyrite, rutile, and titanite (ø)

  • Pankratz (1970) – 1 chlorargyrite (ø)

  • Bowers and Helgeson (1983) – 1 rutile (ø)

  • sprons92.dat – 1 titanite: Bowers and Helgeson (1983) + “Gibbs free energies and enthalpies were corrected to be consistent with updated values of Gibbs free energies of Ca2+ and CO32- (Shock and Helgeson, 1988) together with the solubilities of calcite and aragonite reported by Plummer and Busenberg (1982) (ø)

Robie et al. (1979) – 4 iron (ø)

  • Kelley (1960) – 1 iron Cp (ø)

  • CHNOSZ – 3 GHS (Tr) of the phase that is stable at 298.15 K was combined with Htr and the Cp coefficients to calculate the metastable GHS (Tr) of the phases that are stable at higher temperatures.

Wagman et al. (1982) – 1 MgSO4

Jackson and Helgeson (1985) – 5 Sn minerals (ø)

  • CHNOSZ – 1 GHS (Tr) of the phase that is stable at 298.15 K was combined with Htr and the Cp coefficients to calculate the metastable GHS (Tr) of the phases that are stable at higher temperatures.

Parker and Khodakovskii (1995) – 1 melanterite

Robie and Hemingway (1995) – 1 gypsum GHS

  • Kelley (1960) – 1 gypsum Cp

McCollom and Shock (1997) – 3 sulfur (*)

  • slop98.dat – 3 “Data and parameters as used by McCollom and Shock (1997).” (*)

Everett L. Shock, Sassani, and Betz (1997) – 1 uraninite (*)

Everett L. Shock, Sassani, Willis, et al. (1997) – 2 zincite and litharge (*)

  • Helgeson et al. (1978) – 1 litharge S, V, and Cp parameters (ø)

  • slop98.dat – 1 zincite and litharge; “These data were used in Everett L. Shock, Sassani, Willis, et al. (1997), but were not tabulated in the paper.” (*)

Sassani and Shock (1998) – 15 platinum-group solids (*)

Stoffregen et al. (2000) – 3 jarosite, natroalunite, and natrojarosite

Amend and Shock (2001) – 3 selenium and molybdenite (†)

Mercury et al. (2001) – 8 ice polymorphs

Juraj Majzlan, Grevel, et al. (2003) – 3 goethite, lepidocrocite, and maghemite GHS

  • Juraj Majzlan, Lang, et al. (2003) – 3 goethite, lepidocrocite, and maghemite Cp

Majzlan et al. (2004) – 1 hydronium jarosite

Majzlan et al. (2006) – 3 coquimbite, ferricopiapite, and rhomboclase

Grevel and Majzlan (2009) – 4 kieserite, starkeyite, hexahydrite, and epsomite

Organic (479)

Tardy et al. (1997) – 5 humic acid, microflora, and plants

Helgeson et al. (1998) – 59 organic molecules and groups

Helgeson et al. (1998) – 20 amino acids (‡)

  • LaRowe and Dick (2012) – 4 updated and corrected parameters for cysteine, glycine, leucine, and methionine (‡)

Richard and Helgeson (1998) – 311 organic molecules and groups

Richard (2001) – 8 organic sulfur compounds

LaRowe and Harold C. Helgeson (2006a) – 19 nucleic-acid bases, nucleosides, and nucleotides

LaRowe and Harold C. Helgeson (2006b) – 9 Mg-complexed adenosine nucleotides (ATP), NAD, and NADP

Helgeson et al. (2009) – 5 kerogens

Richard and Gaona (2011) – 13 organic iodine compounds

LaRowe and Dick (2012) – 30 4-hydroxyproline, 5-hydroxylysine, 4 dipeptides, and sidechain and backbone groups in proteins (‡)

Liquids

Organic (532)

Helgeson et al. (1998) – 186 organic molecules and groups

Richard and Helgeson (1998) – 231 organic molecules and groups

Richard (2001) – 67 organic sulfur compounds

LaRowe and Harold C. Helgeson (2006b) – 2 pyridine and piperidine

Richard (2008) – 17 alkenes

Richard and Gaona (2011) – 29 organic iodine compounds

Gases

Inorganic (18)

Wagman et al. (1982) – 2 gases GHS (†)

  • Amend and Shock (2001) – 2 NO and N2O (†)

Wagman et al. (1982) – 15 gases GHS (ø)

  • Kelley (1960) – 15 gases Cp (ø)

Johnson (1992) – 1 steam, Cp represented by the Maier-Kelley equation (ø)

  • sprons92.dat – 1 “Parameters given provide smooth metastable extrapolation of one-bar steam properties predicted by the Haar et al. (1984) equation of state to temperatures < the saturation temperature (99.632 C).” (ø)

Organic (266)

Shock (1993) – 2 carbon monoxide and ethylene (*)

Dale et al. (1997) – 4 phenol, and cresol isomers (*)

Dale et al. (1997) – 6 dimethylphenol isomers

Helgeson et al. (1998) – 153 organic molecules and groups

Richard (2001) – 62 organic sulfur compounds

Richard and Gaona (2011) – 39 organic iodine compounds

Total count of species

3555 of 3555 entries in thermo$obigt are documented here.

References

Accornero M, Marini L, Lelli M. 2010. Prediction of the thermodynamic properties of metal-chromate aqueous complexes to high temperatures and pressures and implications for the speciation of hexavalent chromium in some natural waters. Applied Geochemistry 25(2): 242–260. doi: 10.1016/j.apgeochem.2009.11.010

Amend JP, Helgeson HC. 1997. Calculation of the standard molal thermodynamic properties of aqueous biomolecules at elevated temperatures and pressures. Part 1. l-α-amino acids. Journal of the Chemical Society, Faraday Transactions 93(10): 1927–1941. doi: 10.1039/A608126F

Amend JP, Plyasunov AV. 2001. Carbohydrates in thermophile metabolism: Calculation of the standard molal thermodynamic properties of aqueous pentoses and hexoses at elevated temperatures and pressures. Geochimica et Cosmochimica Acta 65(21): 3901–3917. doi: 10.1016/S0016-7037(01)00707-4

Amend JP, Shock EL. 2001. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiology Reviews 25(2): 175–243. doi: 10.1111/j.1574-6976.2001.tb00576.x

Bowers TS, Helgeson HC. 1983. Calculation of the thermodynamic and geochemical consequences of nonideal mixing in the system H2O-CO2-NaCl on phase relations in geologic systems: Equation of state for H2O-CO2-NaCl fluids at high pressures and temperatures. Geochimica et Cosmochimica Acta 47(7): 1247–1275. doi: 10.1016/0016-7037(83)90066-2

Canovas PA III, Shock EL. 2016. Geobiochemistry of metabolism: Standard state thermodynamic properties of the citric acid cycle. Geochimica et Cosmochimica Acta 195: 293–322. doi: 10.1016/j.gca.2016.08.028

CHNOSZ. 2017. Chemical Thermodynamics and Activity Diagrams. Available at https://cran.r-project.org/package=CHNOSZ.

Dale JD, Shock EL, MacLoed G, Aplin AC, Larter SR. 1997. Standard partial molal properties of aqueous alkylphenols at high pressures and temperatures. Geochimica et Cosmochimica Acta 61(19): 4017–4024. doi: 10.1016/S0016-7037(97)00212-3

Dick JM. 2007. Calculation of the relative stabilities of proteins as a function of temperature, pressure, and chemical potentials in subcellular and geochemical environments [Ph.D. dissertation]. University of California.

Dick JM, Evans KA, Holman AI, Jaraula CMB, Grice K. 2013. Estimation and application of the thermodynamic properties of aqueous phenanthrene and isomers of methylphenanthrene at high temperature. Geochimica et Cosmochimica Acta 122: 247–266. doi: 10.1016/j.gca.2013.08.020

Dick JM, LaRowe DE, Helgeson HC. 2006. Temperature, pressure, and electrochemical constraints on protein speciation: Group additivity calculation of the standard molal thermodynamic properties of ionized unfolded proteins. Biogeosciences 3(3): 311–336. doi: 10.5194/bg-3-311-2006

Grevel K-D, Majzlan J. 2009. Internally consistent thermodynamic data for magnesium sulfate hydrates. Geochimica et Cosmochimica Acta 73(22): 6805–6815. doi: 10.1016/j.gca.2009.08.005

Haar L, Gallagher JS, Kell GS. 1984. NBS/NRC Steam Tables: Thermodynamic and Transport Properties and Computer Programs for Vapor and Liquid States of Water in SI Units. Washington, D. C.: Hemisphere Publishing Corporation. Available at http://www.worldcat.org/oclc/858456124.

Haas JR, Shock EL. 1999. Halocarbons in the environment: Estimates of thermodynamic properties for aqueous chloroethylene species and their stabilities in natural settings. Geochimica et Cosmochimica Acta 63(19-20): 3429–3441. doi: 10.1016/S0016-7037(99)00276-8

Haas JR, Shock EL, Sassani DC. 1995. Rare earth elements in hydrothermal systems: Estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures. Geochimica et Cosmochimica Acta 59(21): 4329–4350. doi: 10.1016/0016-7037(95)00314-P

Hawrylak B, Palepu R, Tremaine PR. 2006. Thermodynamics of aqueous methyldiethanolamine (MDEA) and methyldiethanolammonium chloride (MDEAH+Cl) over a wide range of temperature and pressure: Apparent molar volumes, heat capacities, and isothermal compressibilities. Journal of Chemical Thermodynamics 38(8): 988–1007. doi: 10.1016/j.jct.2005.10.013

Helgeson HC. 1985. Errata. II. Thermodynamics of minerals, reactions, and aqueous solutions at high pressures and temperatures. American Journal of Science 285(9): 845–855. doi: 10.2475/ajs.285.9.845

Helgeson HC, Delany JM, Nesbitt HW, Bird DK. 1978. Summary and critique of the thermodynamic properties of rock-forming minerals. American Journal of Science 278A: 1–229. Available at http://www.worldcat.org/oclc/13594862.

Helgeson HC, Owens CE, Knox AM, Richard L. 1998. Calculation of the standard molal thermodynamic properties of crystalline, liquid, and gas organic molecules at high temperatures and pressures. Geochimica et Cosmochimica Acta 62(6): 985–1081. doi: 10.1016/S0016-7037(97)00219-6

Helgeson HC, Richard L, McKenzie WF, Norton DL, Schmitt A. 2009. A chemical and thermodynamic model of oil generation in hydrocarbon source rocks. Geochimica et Cosmochimica Acta 73(3): 594–695. doi: 10.1016/j.gca.2008.03.004

Jackson KJ, Helgeson HC. 1985. Chemical and thermodynamic constraints on the hydrothermal transport and deposition of tin. II. Interpretation of phase relations in the Southeast Asian tin belt. Economic Geology 80(5): 1365–1378. doi: 10.2113/gsecongeo.80.5.1365

Johnson JW. 1992. Personal calculation. Earth Sciences Dept., Lawrence Livermore National Lab, Livermore, CA.

Johnson JW, Oelkers EH, Helgeson HC. 1992. SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000°C. Computers & Geosciences 18(7): 899–947. doi: 10.1016/0098-3004(92)90029-Q

Kelley KK. 1960. Contributions to the Data in Theoretical Metallurgy XIII: High Temperature Heat Content, Heat Capacities and Entropy Data for the Elements and Inorganic Compounds. U. S. Bureau of Mines. (Bulletin 584). Available at http://www.worldcat.org/oclc/693388901.

LaRowe DE, Dick JM. 2012. Calculation of the standard molal thermodynamic properties of crystalline peptides. Geochimica et Cosmochimica Acta 80: 70–91. doi: 10.1016/j.gca.2011.11.041

LaRowe DE, Helgeson HC. 2006a. Biomolecules in hydrothermal systems: Calculation of the standard molal thermodynamic properties of nucleic-acid bases, nucleosides, and nucleotides at elevated temperatures and pressures. Geochimica et Cosmochimica Acta 70(18): 4680–4724. doi: 10.1016/j.gca.2006.04.010

LaRowe DE, Helgeson HC. 2006b. The energetics of metabolism in hydrothermal systems: Calculation of the standard molal thermodynamic properties of magnesium-complexed adenosine nucleotides and NAD and NADP at elevated temperatures and pressures. Thermochimica Acta 448(2): 82–106. doi: 10.1016/j.tca.2006.06.008

Majzlan J, Grevel K-D, Navrotsky A. 2003. Thermodynamics of Fe oxides: Part II. Enthalpies of formation and relative stability of goethite (α-FeOOH), lepidocrocite (γ-FeOOH), and maghemite (γ-Fe2O3). American Mineralogist 88(5-6): 855–859. doi: 10.2138/am-2003-5-614

Majzlan J, Lang BE, Stevens R, Navrotsky A, Woodfield BF, Boerio-Goates J. 2003. Thermodynamics of Fe oxides: Part I. Entropy at standard temperature and pressure and heat capacity of goethite (α-FeOOH), lepidocrocite (γ-FeOOH), and maghemite (γ-Fe2O3). American Mineralogist 88(5-6): 846–854. doi: 10.2138/am-2003-5-613

Majzlan J, Navrotsky A, McCleskey RB, Alpers CN. 2006. Thermodynamic properties and crystal structure refinement of ferricopiapite, coquimbite, rhomboclase, and Fe2(SO4)3(H2O)5. European Journal of Mineralogy 18(2): 175–186. doi: 10.1127/0935-1221/2006/0018-0175

Majzlan J, Stevens R, Boerio-Goates J, Woodfield BF, Navrotsky A, Burns PC, Crawford MK, Amos TG. 2004. Thermodynamic properties, low-temperature heat-capacity anomalies, and single-crystal X-ray refinement of hydronium jarosite, (H3O)Fe3(SO4)2(OH)6. Physics and Chemistry of Minerals 31(8): 518–531. doi: 10.1007/s00269-004-0405-z

Marini L, Accornero M. 2007. Prediction of the thermodynamic properties of metal-arsenate and metal-arsenite aqueous complexes to high temperatures and pressures and some geological consequences. Environmental Geology 52(7): 1343–1363. doi: 10.1007/s00254-006-0578-5

Marini L, Accornero M. 2010. Prediction of the thermodynamic properties of metal-arsenate and metal-arsenite aqueous complexes to high temperatures and pressures and some geological consequences (vol 52, pg 1343, 2007). Environmental Earth Sciences 59(7): 1601–1606. doi: 10.1007/s12665-009-0369-x

McCollom TM, Shock EL. 1997. Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. Geochimica et Cosmochimica Acta 61(20): 4375–4391. doi: 10.1016/S0016-7037(97)00241-X

Mercury L, Vieillard P, Tardy Y. 2001. Thermodynamics of ice polymorphs and ‘ice-like’ water in hydrates and hydroxides. Applied Geochemistry 16(2): 161–181. doi: 10.1016/S0883-2927(00)00025-1

Murphy WM, Shock EL. 1999. Environmental aqueous geochemistry of actinides. Reviews in Mineralogy and Geochemistry 38(1): 221–253. Mineralogical Society of America. Available at http://rimg.geoscienceworld.org/content/38/1/221.

Pankratz LB. 1970. Thermodynamic Data for Silver Chloride and Silver Bromide. U. S. Bureau of Mines. (Report of investigations; Vol. 7430). Available at http://www.worldcat.org/oclc/14154245.

Pankratz LB, King EG. 1970. High-Temperature Enthalpies and Entropies of Chalcopyrite and Bornite. U. S. Bureau of Mines. (Report of investigations; Vol. 7435). Available at http://www.worldcat.org/oclc/14154292.

Parker VB, Khodakovskii IL. 1995. Thermodynamic properties of the aqueous ions (2+ and 3+) of iron and the key compounds of iron. Journal of Physical and Chemical Reference Data 24(5): 1699–1745. doi: 10.1063/1.555964

Plummer LN, Busenberg E. 1982. The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90°C, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O. Geochimica et Cosmochimica Acta 46(6): 1011–1040. doi: 10.1016/0016-7037(82)90056-4

Plyasunov AV, Shock EL. 2001. Correlation strategy for determining the parameters of the revised Helgeson-Kirkham-Flowers model for aqueous nonelectrolytes. Geochimica et Cosmochimica Acta 65(21): 3879–3900. doi: 10.1016/S0016-7037(01)00678-0

Prapaipong P, Shock EL, Koretsky CM. 1999. Metal-organic complexes in geochemical processes: Temperature dependence of the standard thermodynamic properties of aqueous complexes between metal cations and dicarboxylate ligands. Geochimica et Cosmochimica Acta 63(17): 2547–2577. doi: 10.1016/S0016-7037(99)00146-5

Richard L. 2001. Calculation of the standard molal thermodynamic properties as a function of temperature and pressure of some geochemically important organic sulfur compounds. Geochimica et Cosmochimica Acta 65(21): 3827–3877. doi: 10.1016/S0016-7037(01)00761-X

Richard L. 2008. Personal communication.

Richard L, Gaona X. 2011. Thermodynamic properties of organic iodine compounds. Geochimica et Cosmochimica Acta 75(22): 7304–7350. doi: 10.1016/j.gca.2011.07.030

Richard L, Helgeson HC. 1998. Calculation of the thermodynamic properties at elevated temperatures and pressures of saturated and aromatic high molecular weight solid and liquid hydrocarbons in kerogen, bitumen, petroleum, and other organic matter of biogeochemical interest. Geochimica et Cosmochimica Acta 62(23-24): 3591–3636. doi: 10.1016/S0016-7037(97)00345-1

Robie RA, Hemingway BS. 1995. Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures. U. S. Geological Survey. (Bulletin 2131). Available at https://pubs.er.usgs.gov/publication/b2131.

Robie RA, Hemingway BS, Fisher JR. 1979. Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures. U. S. Geological Surv. (Bulletin 1452). Available at http://pubs.er.usgs.gov/publication/b1452.

Saccocia PJ, Seyfried WE. 1993. A resolution of discrepant thermodynamic properties for chamosite retrieved from experimental and empirical techniques. American Mineralogist 78(5-6): 607–611. Mineralogical Society of America. Available at http://ammin.geoscienceworld.org/content/78/5-6/607.

Sassani DC, Shock EL. 1998. Solubility and transport of platinum-group elements in supercritical fluids: Summary and estimates of thermodynamic properties for ruthenium, rhodium, palladium, and platinum solids, aqueous ions, and complexes to 1000°C and 5 kbar. Geochimica et Cosmochimica Acta 62(15): 2643–2671. doi: 10.1016/S0016-7037(98)00049-0

Schulte M. 2010. Organic sulfides in hydrothermal solution: Standard partial molal properties and role in organic geochemistry of hydrothermal environments. Aquatic Geochemistry 16(4): 621–637. doi: 10.1007/s10498-010-9102-3

Schulte MD, Rogers KL. 2004. Thiols in hydrothermal solution: Standard partial molal properties and their role in the organic geochemistry of hydrothermal environments. Geochimica et Cosmochimica Acta 68(5): 1087–1097. doi: 10.1016/j.gca.2003.06.001

Schulte MD, Shock EL. 1993. Aldehydes in hydrothermal solution: Standard partial molal thermodynamic properties and relative stabilities at high temperatures and pressures. Geochimica et Cosmochimica Acta 57(16): 3835–3846. doi: 10.1016/0016-7037(93)90337-V

Schulte MD, Shock EL, Wood RH. 2001. The temperature dependence of the standard-state thermodynamic properties of aqueous nonelectrolytes. Geochimica et Cosmochimica Acta 65(21): 3919–3930. doi: 10.1016/S0016-7037(01)00717-7

Shock EL. 1992. Stability of peptides in high-temperature aqueous solutions. Geochimica et Cosmochimica Acta 56(9): 3481–3491. doi: 10.1016/0016-7037(92)90392-V

Shock EL. 1993. Hydrothermal dehydration of aqueous organic compounds. Geochimica et Cosmochimica Acta 57(14): 3341–3349. doi: 10.1016/0016-7037(93)90542-5

Shock EL. 1995. Organic acids in hydrothermal solutions: Standard molal thermodynamic properties of carboxylic acids and estimates of dissociation constants at high temperatures and pressures. American Journal of Science 295(5): 496–580. doi: 10.2475/ajs.295.5.496

Shock EL. 2009. Minerals as energy sources for microorganisms. Economic Geology 104(8): 1235–1248. doi: 10.2113/gsecongeo.104.8.1235

Shock EL, Helgeson HC. 1988. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000°C. Geochimica et Cosmochimica Acta 52(8): 2009–2036. doi: 10.1016/0016-7037(88)90181-0

Shock EL, Helgeson HC. 1990. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Standard partial molal properties of organic species. Geochimica et Cosmochimica Acta 54(4): 915–945. doi: 10.1016/0016-7037(90)90429-O

Shock EL, Helgeson HC, Sverjensky DA. 1989. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Standard partial molal properties of inorganic neutral species. Geochimica et Cosmochimica Acta 53(9): 2157–2183. doi: 10.1016/0016-7037(89)90341-4

Shock EL, Koretsky CM. 1993. Metal-organic complexes in geochemical processes: Calculation of standard partial molal thermodynamic properties of aqueous acetate complexes at high pressures and temperatures. Geochimica et Cosmochimica Acta 57(20): 4899–4922. doi: 10.1016/0016-7037(93)90128-J

Shock EL, Koretsky CM. 1995. Metal-organic complexes in geochemical processes: Estimation of standard partial molal thermodynamic properties of aqueous complexes between metal cations and monovalent organic acid ligands at high pressures and temperatures. Geochimica et Cosmochimica Acta 59(8): 1497–1532. doi: 10.1016/0016-7037(95)00058-8

Shock EL, McKinnon WB. 1993. Hydrothermal processing of cometary volatiles—Applications to Triton. Icarus 106(2): 464–477. doi: 10.1006/icar.1993.1185

Shock EL, Sassani DC, Betz H. 1997. Uranium in geologic fluids: Estimates of standard partial molal properties, oxidation potentials, and hydrolysis constants at high temperatures and pressures. Geochimica et Cosmochimica Acta 61(20): 4245–4266. doi: 10.1016/S0016-7037(97)00240-8

Shock EL, Sassani DC, Willis M, Sverjensky DA. 1997. Inorganic species in geologic fluids: Correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. Geochimica et Cosmochimica Acta 61(5): 907–950. doi: 10.1016/S0016-7037(96)00339-0

slop07.dat. 2007. Sequential-access thermodynamic datafile used by PROGRAM supcrt92. Last updated on 2008-04-17. Accessed on 2017-03-02. Available at http://geopig.asu.edu/?q=tools.

slop15.dat. 2015. Sequential-access thermodynamic datafile used by PROGRAM supcrt92. Last updated on 2015-03-03. Accessed on 2017-03-03. Available at http://geopig.asu.edu/?q=tools.

slop98.dat. 1998. Sequential-access thermodynamic datafile used by PROGRAM supcrt92. Last updated on 1998-08-20. Accessed on 2017-03-01. Available at http://geopig.asu.edu/?q=tools.

sprons92.dat. 1992. S[equential-access] pro[perties of] n[atural] s[ubstances].dat; datafile used by PROGRAM supcrt91. Included with the SUPCRT92 package (Johnson et al., 1992). Last updated on 1991-02-15.

Stoffregen RE, Alpers CN, Jambor JL. 2000. Alunite-jarosite crystallography, thermodynamics, and geochronology. In: Sulfate Minerals: Crystallography, Geochemistry and Environmental Significance. Mineralogical Society of America. pp. 453–479. doi: 10.2138/rmg.2000.40.9

Sverjensky DA, Shock EL, Helgeson HC. 1997. Prediction of the thermodynamic properties of aqueous metal complexes to 1000°C and 5 kb. Geochimica et Cosmochimica Acta 61(7): 1359–1412. doi: 10.1016/S0016-7037(97)00009-4

Tardy Y, Schaul R, Duplay J. 1997. Domaines de stabilité thermodynamiques des humus, de la microflore et des plantes. Comptes Rendus de l’Academie des Sciences, Serie IIa: Sciences de la Terre et des Planetes 324(12): 969–976. doi: 10.1016/S1251-8050(97)83981-X

Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM, Churney KL, Nuttall RL. 1982. The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units. Journal of Physical and Chemical Reference Data 11(Suppl. 2): 1–392. Available at https://srd.nist.gov/JPCRD/jpcrdS2Vol11.pdf.