JMDplots vignettes

3D Cell Culture

This vignette from the R package JMDplots version 1.2.19-9 shows chemical metrics for proteins that are differentially expressed in 3D compared to 2D culture conditions. The analysis is described in more detail in a paper (Dick, 2021). Abbreviations:

datasets <- pdat_3D(2020)

Differences are calculated as (median value for up-regulated proteins) - (median value for down-regulated proteins). Dashed lines enclose the 50% confidence region for highest probability density.

In the table, values of ΔZC and ΔnH2O are multiplied by 1000, values of ΔMW are multiplied by 100, and negative values are shown in bold. Abbreviations:

set reference (description) ndown nup ΔZC ΔnH2O ΔnAA ΔMW
a PLC+10 (HepG2 hepatocellular carcinoma cells) 35 47 -4 34 -155 165
b MHG+12 (MCF-7 breast cancer cells P5) 409 337 -18 -10 -194 -33
c MHG+12 (MCF-7 breast cancer cells P2) 248 214 -14 -3 -168 -69
d MVC+12 (HT29 colon cancer cells perinecrotic) 48 52 -5 -13 128 -11
e MVC+12 (HT29 colon cancer cells necrotic) 101 186 -20 -21 118 -29
f YYW+13 (HNSCC tumor spheres) 58 65 0 -9 44 -107
g ZMH+13 (HUVEC Matrigel 12h) 48 58 -15 -14 180 -141
h ZMH+13 (HUVEC Matrigel 24h) 196 239 -26 -42 143 -95
i HKX+14 (U251 glioma cells) 295 68 4 -27 121 -113
j KDS+14 (hESC spheroids) 270 52 -9 -18 52 62
k KDS+14 (hiPSC spheroids) 422 53 -8 -13 16 88
l KDS+14 (hPSC spheroids) 612 98 -11 -27 -32 22
m RKP+14 (colorectal cancer-derived cells) 93 174 15 3 -82 75
n SAS+14 (SK-N-BE2 neuroblastoma spheroids) 70 116 10 -17 -117 14
o WRK+14 (HepG2/C3A hepatocellular carcinoma) 125 291 -22 -24 22 116
p MTK+15 (OV-90AD ovarian cancer multicellular aggregates) 39 90 -15 -40 -30 -74
q YLW+16 (HT29 colon carcinoma) 116 225 -36 -19 -108 -39
r KJK+18 (SW480 colorectal cancer) 247 136 -56 -34 98 -2
s TGD18 (normal human skin fibroblasts) 15 57 28 -33 -185 142
t TGD18 (cancer-associated fibroblasts) 43 90 27 -37 30 28
u EWK+19 (glioblastoma spheroids) 110 171 4 16 86 -72
v GADS19 (skin fibroblasts) 94 49 11 -34 196 134
w HLC19 (HepG2 hepatocellular carcinoma cells) 573 590 -24 -50 -10 -44
x LPK+19 (mouse 3T3-L1 preadipocytes) 76 105 -32 -38 18 -108
y LPK+19 (mouse 3T3-L1 adipocytes) 97 208 -58 18 -147 -59
z LPK+19 (mouse 3T3-L1 macrophages) 220 134 -1 26 -130 -32
A DKM+20 (bone marrow-derived MSCs aggregates) 57 117 -31 -21 -234 -37

Data Sources

Gene names or other identifiers were converted to UniProt accession numbers using the UniProt mapping tool.

a. Gene names from Supporting Information Table 1S of Pruksakorn et al. (2010). b. c. Sheets 2 and 3 in Table S1 of Morrison et al. (2012). d. e. Supplemental Table 1C of McMahon et al. (2012), filtered to include proteins with expression ratios < 0.77 or > 1.3. f. Supplemental Table S5 of Yan et al. (2013). g. h. Supplemental Table S4 of Zanivan et al. (2013). i. Table S1 of He et al. (2014). j. k. l. Supplemental Table S1 of Konze et al. (2014) (hESC: human embryonic stem cells; hiPSC: human induced pluripotent stem cells; hPSC: human pluripotent stem cells). m. Table S2 of Rajcevic et al. (2014), filtered to include proteins that have differences in spectral counts recorded in at least two of three experiments, absolute overall fold change is ≥ 1.5 or ≤ 2/3, and p-value is < 0.05. n. Supplementary Figure 2 of Saini et al. (2014). o. P1_Data sheet in the Supporting Information file of Wrzesinski et al. (2014). p. Supplemental Table S1 of Musrap et al. (2015), filtered to exclude marked contaminants and reverse sequences and to include proteins with “Ratio H/L normalized” > 1.5 or < 2/3. q. Tables S1a and S1b of Yue et al. (2016). r. Tables S2 and S3 of Kim et al. (2018). s. t. Supplementary Table 3 of Toelle, Gaggioli & Dengjel (2018). u. Extracted from proteinGroups.txt in ProteomeXchange Dataset PXD008244/txt.zip (Erhart et al., 2019), including proteins quantified in at least two replicates in each condition (adherent and spheroid) and with median fold change > 2 or < 0.5. v. Extracted from Supplementary Table 1 of Gęgotek et al. (2019). Values were quantile normalized, then ratios were calculated between 3D and 2D cultures for each treatment (control, CBD, UVA, UVA+CBD, UVB, UVB+CBD). Ratios > 1.2 or < 1/1.2 in at least 4 treatments were used to identify differentially expressed proteins. w. Supplementary Data I, sheet “Volcano plot 2Dv3D” of Hurrell, Lilley & Cromarty (2019). x. y. z. Supporting Table 1 of Lee et al. (2019), sheets “3P2P” (mono-cultured preadipocytes), “3A2A” (mono-cultured adipocytes), “3C2C” (co-cultured adipocytes with macrophages), filtered to include proteins marked as “T-test Significant” and with absolute value of “N: T-test Difference” > log2(0.5). A. Supplementary Table S2 of Doron et al. (2020), filtered to include proteins with fold change > 2 or < 0.5 for all donors.

References

Doron G, Klontzas ME, Mantalaris A, Guldberg RE, Temenoff JS. 2020. Multiomics characterization of mesenchymal stromal cells cultured in monolayer and as aggregates. Biotechnology and Bioengineering 117:1761–1778. DOI: 10.1002/bit.27317.

Erhart F, Weiss T, Klingenbrunner S, Fischhuber K, Reitermaier R, Halfmann A, Blauensteiner B, Lötsch D, Spiegl-Kreinecker S, Berger W, Sialana FJ, Lubec G, Felzmann T, Dohnal A, Visus C. 2019. Spheroid glioblastoma culture conditions as antigen source for dendritic cell-based immunotherapy: Spheroid proteins are survival-relevant targets but can impair immunogenic interferon γ production. Cytotherapy 21:643–658. DOI: 10.1016/j.jcyt.2019.03.002.

Gęgotek A, Atalay S, Domingues P, Skrzydlewska E. 2019. The differences in the proteome profile of cannabidiol-treated skin fibroblasts following UVA or UVB irradiation in 2D and 3D cell cultures. Cells 8:995. DOI: 10.3390/cells8090995.

He W, Kuang Y, Xing X, Simpson RJ, Huang H, Yang T, Chen J, Yang L, Liu E, He W, Gu J. 2014. Proteomic comparison of 3D and 2D glioma models reveals increased HLA-E expression in 3D models is associated with resistance to NK cell-mediated cytotoxicity. Journal of Proteome Research 13:2272–2281. DOI: 10.1021/pr500064m.

Hurrell T, Lilley KS, Cromarty AD. 2019. Proteomic responses of HepG2 cell monolayers and 3D spheroids to selected hepatotoxins. Toxicology Letters 300:40–50. DOI: 10.1016/j.toxlet.2018.10.030.

Kim YE, Jeon HJ, Kim D, Lee SY, Kim KY, Hong J, Maeng PJ, Kim K-R, Kang D. 2018. Quantitative proteomic analysis of 2D and 3D cultured colorectal cancer cells: Profiling of tankyrase inhibitor XAV939-induced proteome. Scientific Reports 8:13255. DOI: 10.1038/s41598-018-31564-6.

Konze SA, Diepen L van, Schröder A, Olmer R, Möller H, Pich A, Weißmann R, Kuss AW, Zweigerdt R, Buettner FFR. 2014. Cleavage of E-cadherin and β-catenin by calpain affects Wnt signaling and spheroid formation in suspension cultures of human pluripotent stem cells. Molecular & Cellular Proteomics 13:990–1007. DOI: 10.1074/mcp.M113.033423.

Lee SY, Park SB, Kim YE, Yoo HM, Hong J, Choi K-J, Kim KY, Kang D. 2019. iTRAQ-based quantitative proteomic comparison of 2D and 3D adipocyte cell models co-cultured with macrophages using online 2D-nanoLC-ESI-MS/MS. Scientific Reports 9:16746. DOI: 10.1038/s41598-019-53196-0.

McMahon KM, Volpato M, Chi HY, Musiwaro P, Poterlowicz K, Peng Y, Scally AJ, Patterson LH, Phillips RM, Sutton CW. 2012. Characterization of changes in the proteome in different regions of 3D multicell tumor spheroids. Journal of Proteome Research 11:2863–2875. DOI: 10.1021/pr2012472.

Morrison BJ, Hastie ML, Grewal YS, Bruce ZC, Schmidt C, Reynolds BA, Gorman JJ, Lopez JA. 2012. Proteomic comparison of MCF-7 tumoursphere and monolayer cultures. PLOS One 7:e52692. DOI: 10.1371/journal.pone.0052692.

Musrap N, Tuccitto A, Karagiannis GS, Saraon P, Batruch I, Diamandis EP. 2015. Comparative proteomics of ovarian cancer aggregate formation reveals an increased expression of calcium-activated chloride channel regulator 1 (CLCA1). Journal of Biological Chemistry 290:17218–17227. DOI: 10.1074/jbc.m115.639773.

Pruksakorn D, Lirdprapamongkol K, Chokchaichamnankit D, Subhasitanont P, Chiablaem K, Svasti J, Srisomsap C. 2010. Metabolic alteration of HepG2 in scaffold-based 3-D culture: Proteomic approach. Proteomics 10:3896–3904. DOI: 10.1002/pmic.201000137.

Rajcevic U, Knol J, Piersma S, Bougnaud S, Fack F, Sundlisaeter E, Sondenaa K, Myklebust R, Pham T, Niclou S, Jimenez C. 2014. Colorectal cancer derived organotypic spheroids maintain essential tissue characteristics but adapt their metabolism in culture. Proteome Science 12:39. DOI: 10.1186/1477-5956-12-39.

Saini RKR, Attarha S, da Silva Santos C, Kolakowska J, Funa K, Souchelnytskyi S. 2014. Proteomics of dedifferentiation of SK-N-BE2 neuroblastoma cells. Biochemical and Biophysical Research Communications 454:202–209. DOI: 10.1016/j.bbrc.2014.10.065.

Toelle RC, Gaggioli C, Dengjel J. 2018. Three-dimensional cell culture conditions affect the proteome of cancer-associated fibroblasts. Journal of Proteome Research 17:2780–2789. DOI: 10.1021/acs.jproteome.8b00237.

Wrzesinski K, Rogowska-Wrzesinska A, Kanlaya R, Borkowski K, Schwämmle V, Dai J, Joensen KE, Wojdyla K, Carvalho VB, Fey SJ. 2014. The cultural divide: Exponential growth in classical 2D and metabolic equilibrium in 3D environments. PLOS One 9:e106973. DOI: 10.1371/journal.pone.0106973.

Yan M, Yang X, Wang L, Clark D, Zuo H, Ye D, Chen W, Zhang P. 2013. Plasma membrane proteomics of tumor spheres identify CD166 as a novel marker for cancer stem-like cells in head and neck squamous cell carcinoma. Molecular & Cellular Proteomics 12:3271–3284. DOI: 10.1074/mcp.M112.025460.

Yue X, Lukowski JK, Weaver EM, Skube SB, Hummon AB. 2016. Quantitative proteomic and phosphoproteomic comparison of 2D and 3D colon cancer cell culture models. Journal of Proteome Research 15:4265–4276. DOI: 10.1021/acs.jproteome.6b00342.

Zanivan S, Maione F, Hein MY, Hernández-Fernaud JR, Ostasiewicz P, Giraudo E, Mann M. 2013. SILAC-based proteomics of human primary endothelial cell morphogenesis unveils tumor angiogenic markers. Molecular & Cellular Proteomics 12:3599–3611. DOI: 10.1074/mcp.M113.031344.