JMDplots vignettes

Colorectal Cancer

This vignette from the R package JMDplots version 1.2.19-9 shows chemical metrics for proteins that are differentially expressed in colorectal cancer compared to normal tissue. The analysis is described in more detail in a paper (Dick, 2021). Abbreviations:

datasets <- pdat_colorectal(2020)

Differences are calculated as (median value for up-regulated proteins) - (median value for down-regulated proteins). Dashed lines enclose the 50% confidence region for highest probability density.

In the table, values of ΔZC and ΔnH2O are multiplied by 1000, values of ΔMW are multiplied by 100, and negative values are shown in bold. Abbreviations:

set reference (description) ndown nup ΔZC ΔnH2O ΔnAA ΔMW
a WTK+08 (T / N) 57 70 1 2 -64 5
b XZC+10 (stage I / normal) 48 166 -3 10 -100 -16
c XZC+10 (stage II / normal) 77 321 11 2 4 -21
d ZYS+10 (microdissected T / N) 60 57 18 18 -7 -38
e BPV+11 (stage I / normal) 109 72 3 -12 42 -101
f BPV+11 (stage II / normal) 164 140 19 0 93 -29
g BPV+11 (stage III / normal) 63 131 23 -13 -36 38
h BPV+11 (stage IV / normal) 42 26 -8 16 -28 -110
i JCF+11 (T / N) 72 45 16 -2 -36 -20
j MRK+11 (adenocarcinoma / normal) 350 232 28 36 212 35
k SHHS11 (LCM T / N) 28 43 -16 21 62 -114
l FGW+12 (T / matched N) 48 34 -22 50 48 156
m KYK+12 (MSS-type T / N) 73 175 20 6 125 70
n WOD+12 (LCM FFPE T / adjacent N) 79 677 9 27 193 157
o CZD+14 (T / N) 52 74 6 43 -160 51
p STK+15 (membrane enriched T / N) 113 66 -4 7 6 100
q WDO+15 (LCM FFPE T / adjacent N) 879 1281 14 25 129 44
r LXM+16 (biopsy T / N) 191 178 -4 15 -24 65
s PHL+16 (CIS / N) 169 138 16 -6 284 142
t PHL+16 (ICC / N) 129 100 19 -20 309 160
u CTW+17 (organoid T / N) 227 78 -2 24 -120 66
v HZW+17 (T / adjacent N) 126 589 11 24 172 130
w LLL+17 (LCM cancer / non-neoplastic mucosa) 110 77 -6 10 247 148
x NKG+17 (T / N) 48 77 10 -15 -68 -66
y QMB+17 (FFPE T / N) 25 53 -23 53 -63 4
z TMS+17 (epithelial T / N) 158 166 29 17 61 70
A ZLY+17 (T / N) 58 54 18 13 -22 -11
B AKG+18 (T / N) 43 426 -31 32 -46 56
C STA+19 (non-metastatic colon cancer, T / N) 437 317 11 30 78 57
D STA+19 (metastatic colon cancer, T / N) 436 356 25 40 68 9
E VHW+19 (T / adjacent N) 417 31 -32 33 -49 106
F WYL+19 (tumor-associated / normal vascular endothelial cells) 97 119 10 -15 -150 162

Data Sources

Gene names or other identifiers were converted to UniProt accession numbers using the UniProt mapping tool, except for IPI accession numbers, which were converted using the DAVID 6.7 conversion tool.

a. Table 1 and Supplementary Data 1 of Watanabe et al. (2008) (Swiss-Prot and UniProt accession numbers from Supplementary Data 2). b. c. IPI accession numbers from Supplemental Table 4 of Xie et al. (2010). d. IPI accession numbers from Supplemental Table 4 of Zhang et al. (2010). e. f. g. h. Gene names from supplemental Table 9 of Besson et al. (2011). i. Supplementary Table 2 of Jankova et al. (2011). j. Table S8 of Mikula et al. (2011). k. Supplementary Table 1 of Shi et al. (2011). l. Appendix of Fan et al. (2012). m. Gene names from Supplementary Table 4 of Kang et al. (2012), filtered to include proteins with expression ratio > 2 or < 0.5 in both mTRAQ and cICAT analyses. n. Supplementary Table 4 of Wiśniewski et al. (2012). o. Table 2 of Chen et al. (2014). p. Ensembl protein IDs from Supporting Table 2 of Sethi et al. (2015). q. Proteins marked as having a significant change between normal tissue (N) and adenocarcinoma (C) in SI Table 3 of Wiśniewski et al. (2015). r. SI Table S3 of Liu et al. (2016), filtered to include proteins with p-value < 0.05. s. t. Gene names from Supplementary Table 4 of Peng et al. (2016), for differential expression between normal colonic mucosa (NC) and carcinoma in situ (CIS) or invasive colorectal cancer (ICC). u. Table S3 of Cristobal et al. (2017). v. Dataset 6A of Hao et al. (2017). w. Supplementary Material Table S1 of Li et al. (2017). x. Table 2 of Nishio et al. (2017). y. Table S2 of Quesada-Calvo et al. (2017), filtered to include comparisons between adenocarcinoma and diverticular disease. z. Table S1 of Tu et al. (2017), filtered to include proteins that are consistently up- or down-regulated in at least 11 of 12 patients. A. IPI accession numbers from Table S2 of Zhang et al. (2017). B. Supplementary Table 1B of Atak et al. (2018), filtered to include proteins with expression ratio > 3/2 or < 2/3. C. D. Supplementary Table S2 of Saleem et al. (2019), filtered to include proteins with log2 ratio > ± the standard deviation of values for all quantified proteins. E. Online data from Vasaikar et al. (2019) (file: Human__CPTAC_COAD__PNNL__Proteome__TMT__03_01_2017__BCM__Gene__Tumor_Normal_log2FC.cct), filtered to include proteins with median log2 ratio > 1 or < -1. F. Supplementary Information Table S2 of Wang et al. (2019).

References

Atak A, Khurana S, Gollapalli K, Reddy PJ, Levy R, Ben-Salmon S, Hollander D, Donyo M, Heit A, Hotz-Wagenblatt A, Biran H, Sharan R, Rane S, Shelar A, Ast G, Srivastava S. 2018. Quantitative mass spectrometry analysis reveals a panel of nine proteins as diagnostic markers for colon adenocarcinomas. Oncotarget 9:13530–13544. DOI: 10.18632/oncotarget.24418.

Besson D, Pavageau A-H, Valo I, Bourreau A, Bélanger A, Eymerit-Morin C, Moulière A, Chassevent A, Boisdron-Celle M, Morel A, Solassol J, Campone M, Gamelin E, Barré B, Coqueret O, Guette C. 2011. A quantitative proteomic approach of the different stages of colorectal cancer establishes OLFM4 as a new nonmetastatic tumor marker. Molecular & Cellular Proteomics 10:M111.009712. DOI: 10.1074/mcp.M111.009712.

Chen S, Zhang J, Duan L, Zhang Y, Li C, Liu D, Ouyang C, Lu F, Liu X. 2014. Identification of HnRNP M as a novel biomarker for colorectal carcinoma by quantitative proteomics. American Journal of Physiology-Gastrointestinal and Liver Physiology 306:G394–G403. DOI: 10.1152/ajpgi.00328.2013.

Cristobal A, Toorn HWP van den, Wetering M van de, Clevers H, Heck AJR, Mohammed S. 2017. Personalized proteome profiles of healthy and tumor human colon organoids reveal both individual diversity and basic features of colorectal cancer. Cell Reports 18:263–274. DOI: 10.1016/j.celrep.2016.12.016.

Fan N-J, Gao C-F, Wang C-S, Lv J-J, Zhao G, Sheng X-H, Wang X-L, Li D-H, Liu Q-Y, Yin J. 2012. Discovery and verification of gelsolin as a potential biomarker of colorectal adenocarcinoma in a Chinese population: Examining differential protein expression using an iTRAQ labelling-based proteomics approach. Canadian Journal of Gastroenterology 26:41–47. DOI: 10.1155/2012/645218.

Hao J-J, Zhi X, Wang Y, Zhang Z, Hao Z, Ye R, Tang Z, Qian F, Wang Q, Zhu J. 2017. Comprehensive proteomic characterization of the human colorectal carcinoma reveals signature proteins and perturbed pathways. Scientific Reports 7:42436. DOI: 10.1038/srep42436.

Jankova L, Chan C, Fung CLS, Song X, Kwun SY, Cowley MJ, Kaplan W, Dent OF, Bokey EL, Chapuis PH, Baker MS, Robertson GR, Clarke SJ, Molloy MP. 2011. Proteomic comparison of colorectal tumours and non-neoplastic mucosa from paired patient samples using iTRAQ mass spectrometry. Molecular Biosystems 7:2997–3005. DOI: 10.1039/C1MB05236E.

Kang U-B, Yeom J, Kim H-J, Kim H, Lee C. 2012. Expression profiling of more than 3500 proteins of MSS-type colorectal cancer by stable isotope labeling and mass spectrometry. Journal of Proteomics 75:3050–3062. DOI: 10.1016/j.jprot.2011.11.021.

Li G, Li M, Liang X, Xiao Z, Zhang P, Shao M, Peng F, Chen Y, Li Y, Chen Z. 2017. Identifying DCN and HSPD1 as potential biomarkers in colon cancer using 2D-LC-MS/MS combined with iTRAQ technology. Journal of Cancer 8:479–489. DOI: 10.7150/jca.17192.

Liu X, Xu Y, Meng Q, Zheng Q, Wu J, Wang C, Jia W, Figeys D, Chang Y, Zhou H. 2016. Proteomic analysis of minute amount of colonic biopsies by enteroscopy sampling. Biochemical and Biophysical Research Communications 476:286–292. DOI: 10.1016/j.bbrc.2016.05.114.

Mikula M, Rubel T, Karczmarski J, Goryca K, Dadlez M, Ostrowski J. 2011. Integrating proteomic and transcriptomic high-throughput surveys for search of new biomarkers of colon tumors. Functional and Integrative Genomics 11:215–224. DOI: 10.1007/s10142-010-0200-5.

Nishio T, Kurabe N, Goto-Inoue N, Nakamura T, Sugimura H, Setou M, Maekawa M. 2017. Immunohistochemical expression analysis of leucine-rich PPR-motif-containing protein (LRPPRC), a candidate colorectal cancer biomarker identified by shotgun proteomics using iTRAQ. Clinica Chimica Acta 471:276–282. DOI: 10.1016/j.cca.2017.06.011.

Peng F, Huang Y, Li M-Y, Li G-Q, Huang H-C, Guan R, Chen Z-C, Liang S-P, Chen Y-H. 2016. Dissecting characteristics and dynamics of differentially expressed proteins during multistage carcinogenesis of human colorectal cancer. World Journal of Gastroenterology 22:4515–4528. DOI: 10.3748/wjg.v22.i18.4515.

Quesada-Calvo F, Massot C, Bertrand V, Longuespée R, Blétard N, Somja J, Mazzucchelli G, Smargiasso N, Baiwir D, De Pauw-Gillet M-C, Delvenne P, Malaise M, Coimbra Marques C, Polus M, De Pauw E, Meuwis M-A, Louis E. 2017. OLFM4, KNG1 and Sec24C identified by proteomics and immunohistochemistry as potential markers of early colorectal cancer stages. Clinical Proteomics 14:9. DOI: 10.1186/s12014-017-9143-3.

Saleem S, Tariq S, Aleem I, Shaheed S-u, Tahseen M, Atiq A, Hassan S, Abu Bakar M, Khattak S, Syed AA, Ahmad AH, Hussain M, Yusuf MA, Sutton C. 2019. Proteomics analysis of colon cancer progression. Clinical Proteomics 16:44. DOI: 10.1186/s12014-019-9264-y.

Sethi MK, Thaysen-Andersen M, Kim H, Park CK, Baker MS, Packer NH, Paik Y-K, Hancock WS, Fanayan S. 2015. Quantitative proteomic analysis of paired colorectal cancer and non-tumorigenic tissues reveals signature proteins and perturbed pathways involved in CRC progression and metastasis. Journal of Proteomics 126:54–67. DOI: 10.1016/j.jprot.2015.05.037.

Shi H, Hood KA, Hayes MT, Stubbs RS. 2011. Proteomic analysis of advanced colorectal cancer by laser capture microdissection and two-dimensional difference gel electrophoresis. Journal of Proteomics 75:339–351. DOI: 10.1016/j.jprot.2011.07.025.

Tu C, Mojica W, Straubinger RM, Li J, Shen S, Qu M, Nie L, Roberts R, An B, Qu J. 2017. Quantitative proteomic profiling of paired cancerous and normal colon epithelial cells isolated freshly from colorectal cancer patients. Proteomics: Clinical Applications 11:1600155. DOI: 10.1002/prca.201600155.

Vasaikar S, Huang C, Wang X, Petyuk VA, Savage SR, Wen B, Dou Y, Zhang Y, Shi Z, Arshad OA, Gritsenko MA, Zimmerman LJ, McDermott JE, Clauss TR, Moore RJ, Zhao R, Monroe ME, Wang Y-T, Chambers MC, Slebos RJC, Lau KS, Mo Q, Ding L, Ellis M, Thiagarajan M, Kinsinger CR, Rodriguez H, Smith RD, Rodland KD, Liebler DC, Liu T, Zhang B, Pandey A, Paulovich A, Hoofnagle A, Mani DR, Chan DW, Ransohoff DF, Fenyo D, Tabb DL, Levine DA, Boja ES, Kuhn E, White FM, Whiteley GA, Zhu H, Zhang H, Shih I-M, Bavarva J, Whiteaker J, Ketchum KA, Clauser KR, Ruggles K, Elburn K, Hannick L, Watson M, Oberti M, Mesri M, Sanders ME, Borucki M, Gillette MA, Snyder M, Edwards NJ, Vatanian N, Rudnick PA, McGarvey PB, Mertins P, Townsend RR, Thangudu RR, Rivers RC, Payne SH, Davies SR, Cai S, Stein SE, Carr SA, Skates SJ, Madhavan S, Hiltke T, Chen X, Zhao Y, Wang Y, Zhang Z. 2019. Proteogenomic analysis of human colon cancer reveals new therapeutic opportunities. Cell 177:1035–1049. DOI: 10.1016/j.cell.2019.03.030.

Wang G, Yang Q, Li M, Zhang Y, Cai Y, Liang X, Fu Y, Xiao Z, Zhou M, Xie Z, Huang H, Huang Y, Chen Y, He Q, Peng F, Chen Z. 2019. Quantitative proteomic profiling of tumor-associated vascular endothelial cells in colorectal cancer. Biology Open 8:bio042838. DOI: 10.1242/bio.042838.

Watanabe M, Takemasa I, Kawaguchi N, Miyake M, Nishimura N, Matsubara T, Matsuo E-i, Sekimoto M, Nagai K, Matsuura N, Monden M, Nishimura O. 2008. An application of the 2-nitrobenzenesulfenyl method to proteomic profiling of human colorectal carcinoma: A novel approach for biomarker discovery. Proteomics: Clinical Applications 2:925–935. DOI: 10.1002/prca.200780111.

Wiśniewski JR, Duś-Szachniewicz K, Ostasiewicz P, Ziółkowski P, Rakus D, Mann M. 2015. Absolute proteome analysis of colorectal mucosa, adenoma, and cancer reveals drastic changes in fatty acid metabolism and plasma membrane transporters. Journal of Proteome Research 14:4005–4018. DOI: 10.1021/acs.jproteome.5b00523.

Wiśniewski JR, Ostasiewicz P, Duś K, Zielińska DF, Gnad F, Mann M. 2012. Extensive quantitative remodeling of the proteome between normal colon tissue and adenocarcinoma. Molecular Systems Biology 8:611. DOI: 10.1038/msb.2012.44.

Xie L-Q, Zhao C, Cai S-J, Xu Y, Huang L-Y, Bian J-S, Shen C-P, Lu H-J, Yang P-Y. 2010. Novel proteomic strategy reveal combined α1 antitrypsin and cathepsin D as biomarkers for colorectal cancer early screening. Journal of Proteome Research 9:4701–4709. DOI: 10.1021/pr100406z.

Zhang Y, Liu Y, Ye Y, Shen D, Zhang H, Huang H, Li S, Wang S, Ren J. 2017. Quantitative proteome analysis of colorectal cancer-related differential proteins. Journal of Cancer Research and Clinical Oncology 143:233–241. DOI: 10.1007/s00432-016-2274-5.

Zhang Y, Ye Y, Shen D, Jiang K, Zhang H, Sun W, Zhang J, Xu F, Cui Z, Wang S. 2010. Identification of transgelin-2 as a biomarker of colorectal cancer by laser capture microdissection and quantitative proteome analysis. Cancer Science 101:523–529. DOI: 10.1111/j.1349-7006.2009.01424.x.