JMDplots vignettes

Lung Cancer

This vignette from the R package JMDplots version 1.2.19-9 shows chemical metrics for proteins that are differentially expressed in lung cancer compared to normal tissue. The analysis is described in more detail in a paper (Dick, 2021). Abbreviations:

datasets <- pdat_lung(2020)

Differences are calculated as (median value for up-regulated proteins) - (median value for down-regulated proteins). Dashed lines enclose the 50% confidence region for highest probability density.

In the table, values of ΔZC and ΔnH2O are multiplied by 1000, values of ΔMW are multiplied by 100, and negative values are shown in bold. Abbreviations:

set reference (description) ndown nup ΔZC ΔnH2O ΔnAA ΔMW
a LXC+06 (SCC / NBE) 22 44 19 36 -65 -38
b KHA+12 (ADC / pooled normal) 25 25 -27 7 185 163
c KHA+12 (SCC / pooled normal) 23 24 -55 7 -68 309
d YLL+12 (LCM SCC / NBE) 47 46 -3 29 21 -82
e ZZD+12 (LCM LSCC / NBE) 54 41 3 -2 85 -21
f ZZY+13 (plasma membrane ADC / ANT) 24 21 37 19 328 -260
g LLY+14 (SCC / normal) 29 48 -1 38 -24 -73
h LWT+14 (NSCLC / ANT) 345 1240 -9 31 -27 68
i ZLH+14 (membrane microdissected ADC / ANT) 310 257 -2 66 -56 71
j ZLS+14 (endothelial SCC / normal) 61 24 28 37 19 -108
k KNT+15 (FFPE LPIA / pseudo-normal) 346 66 24 -12 134 -150
l BLL+16 (NSCLC proteome) 354 240 7 -31 -132 29
m FGP+16 (adenocarcinoma / ANT) 81 285 -20 43 -121 33
n JCP+16 (mouse endothelial tumor / normal) 18 28 -21 44 65 -21
o HHH+16 (pN0 / normal) 210 135 -21 42 -52 37
p HHH+16 (pN1 / normal) 233 170 -20 35 -96 63
q HHH+16 (pN2.M1 / normal) 154 158 -17 17 -18 118
r TLB+16 (NSCLC / ANT) 346 1059 -6 12 -146 9
s FGW+17 (adenocarcinoma / ANT) 71 1031 -26 21 -522 77
t LZW+17 (mitochondria-related proteins adenocarcinoma / normal) 30 30 -10 34 -21 84
u SFS+17 (SCC / ANT LF) 422 311 -2 1 -96 10
v WLC+17 (NSCLC / ANT) 20 71 -14 57 90 18
w YCC+17 (SCC.Oncogene / ANT) 280 115 2 -4 -160 -41
x YCC+17 (SCC.TSG / ANT) 207 69 -17 20 -214 43
y YCC+17 (SCC.Glycoprotein / ANT) 64 86 6 2 73 21
z YCC+17 (ADC.Oncogene / ANT) 385 72 -15 17 -146 -26
A YCC+17 (ADC.TSG / ANT) 286 42 -14 30 -190 56
B YCC+17 (ADC.Glycoprotein / ANT) 83 134 -6 -34 -96 145
C KPS+20 (ADC / adjacent normal early) 86 279 8 14 73 68
D KPS+20 (ADC / adjacent normal advanced) 92 274 -6 -1 58 22
E XZW+20 (ADC / non-cancerous adjacent) 603 2735 -14 13 -129 61

Data Sources

Where given, gene names or other identifiers were converted to UniProt accession numbers using the UniProt mapping tool, except for IPI accession numbers, which were converted using the DAVID 6.7 conversion tool.

a. Table 1 of Li et al. (2006). b. c. Gene names from Tables II and III of Kikuchi et al. (2012). d. Gene names from Table 2 of Yan et al. (2012). e. IPI numbers from Table 1 of Zeng et al. (2012). f. Table 2 of Zhang et al. (2013). g. Table 1 of Lihong et al. (2014). h. Supplementary data 1b of Li et al. (2014). i. Supplementary Data of Zhang et al. (2014). j. Gene names from Supporting Information Table S5 of Zhuo et al. (2014) (differential expression between normal endothelial cells and both paratumor and tumor endothelial cells). k. Table S3 of Kato et al. (2015) (LPIA: lepidic predominant invasive adenocarcinoma vs pN: pseudo-normal), filtered to include proteins with log2 fold change > 1 or < -1 and p-value < 0.05. l. UniProt names from Table S2 of Backes et al. (2016), filtered to include proteins with log2 fold change > 1.5 or < -1/1.5 and p-value < 0.05. m. Gene names from Table S2 of Fahrmann et al. (2016). n. Gene names from Table 1 of Jin et al. (2016). o. p. q. Supplemental Table S3B of Hsu et al. (2016) (primary tumor / normal comparison; pN0: no nodes involved; pN1: ipsilateral peribronchial/interlobar/hilar LN metastasis; pN2: ipsilateral mediastinal LN metastasis; M1: distant metastasis or malignant effusion). r. Supplemental Table 2 of Tenzer et al. (2016), filtered with adjusted p-value < 0.05 and fold change ≥ 1.5 or ≤ 2/3. s. Gene names from Supplementary Table S1 of Fahrmann et al. (2017), filtered with p-value < 0.05. t. Table 1 of Li et al. (2017). u. Supplementary Table S2 of Stewart et al. (2017) (sheet LF: label-free quantification). v. Supplementary Table 1 of Wang et al. (2017). w. x. y. z. A. B. Gene names from Tables S2–S6 of Yang et al. (2017) filtered to keep proteins with fold change ≥1.5 or ≤2/3 (Oncogene: oncogene-coded proteins; TSG: tumor suppressor gene-coded proteins; Glycoprotein: glycoproteomics data). C. D. Supplemental Table S2 of Kelemen et al. (2020) for early (stage I-II) and advanced (stage III-IV) adenocarcinomas. E. Gene names from Table S4D and UniProt IDs from Table S4A of Xu et al. (2020).

References

Backes C, Ludwig N, Leidinger P, Huwer H, Tenzer S, Fehlmann T, Franke A, Meese E, Lenhof H-P, Keller A. 2016. Paired proteomics, transcriptomics and miRNomics in non-small cell lung cancers: Known and novel signaling cascades. Oncotarget 7:71514–71525. DOI: 10.18632/oncotarget.11723.

Fahrmann JF, Grapov D, Phinney BS, Stroble C, DeFelice BC, Rom W, Gandara DR, Zhang Y, Fiehn O, Pass H, Miyamoto S. 2016. Proteomic profiling of lung adenocarcinoma indicates heightened DNA repair, antioxidant mechanisms and identifies LASP1 as a potential negative predictor of survival. Clinical Proteomics 13:31. DOI: 10.1186/s12014-016-9132-y.

Fahrmann JF, Grapov D, Wanichthanarak K, DeFelice BC, Salemi MR, Rom WN, Gandara DR, Phinney BS, Fiehn O, Pass H, Miyamoto S. 2017. Integrated metabolomics and proteomics highlight altered nicotinamide and polyamine pathways in lung adenocarcinoma. Carcinogenesis 38:271–280. DOI: 10.1093/carcin/bgw205.

Hsu C-H, Hsu C-W, Hsueh C, Wang C-L, Wu Y-C, Wu C-C, Liu C-C, Yu J-S, Chang Y-S, Yu C-J. 2016. Identification and characterization of potential biomarkers by quantitative tissue proteomics of primary lung adenocarcinoma. Molecular & Cellular Proteomics 15:2396–2410. DOI: 10.1074/mcp.M115.057026.

Jin H, Cheng X, Pei Y, Fu J, Lyu Z, Peng H, Yao Q, Jiang Y, Luo L, Zhuo H. 2016. Identification and verification of transgelin-2 as a potential biomarker of tumor-derived lung-cancer endothelial cells by comparative proteomics. Journal of Proteomics 136:77–88. DOI: 10.1016/j.jprot.2015.12.012.

Kato Y, Nakamura H, Tojo H, Nomura M, Nagao T, Kawamura T, Kodama T, Ohira T, Ikeda N, Fehniger T, Marko-Varga G, Nishimura T, Kato H. 2015. A proteomic profiling of laser-microdissected lung adenocarcinoma cells of early lepidic-types. Clinical and Translational Medicine 4:24. DOI: 10.1186/s40169-015-0064-3.

Kelemen O, Pla I, Sanchez A, Rezeli M, Szasz AM, Malm J, Laszlo V, Kwon HJ, Dome B, Marko-Varga G. 2020. Proteomic analysis enables distinction of early- versus advanced-stage lung adenocarcinomas. Clinical and Translational Medicine 10:e106. DOI: 10.1002/ctm2.106.

Kikuchi T, Hassanein M, Amann JM, Liu Q, Slebos RJC, Rahman SMJ, Kaufman JM, Zhang X, Hoeksema MD, Harris BK, Li M, Shyr Y, Gonzalez AL, Zimmerman LJ, Liebler DC, Massion PP, Carbone DP. 2012. In-depth proteomic analysis of nonsmall cell lung cancer to discover molecular targets and candidate biomarkers. Molecular & Cellular Proteomics 11:916–932. DOI: 10.1074/mcp.M111.015370.

Lihong H, Linlin G, Yiping G, Yang S, Xiaoyu Q, Zhuzhu G, Xiaohan Y, Xin Z, Liyan X, Shujuan S. 2014. Proteomics approaches for identification of tumor relevant protein targets in pulmonary squamous cell carcinoma by 2D-DIGE-MS. PLOS One 9:e95121. DOI: 10.1371/journal.pone.0095121.

Li L, Wei Y, To C, Zhu C-Q, Tong J, Pham N-A, Taylor P, Ignatchenko V, Ignatchenko A, Zhang W, Wang D, Yanagawa N, Li M, Pintilie M, Liu G, Muthuswamy L, Shepherd FA, Tsao MS, Kislinger T, Moran MF. 2014. Integrated Omic analysis of lung cancer reveals metabolism proteome signatures with prognostic impact. Nature Communications 5:5469. DOI: 10.1038/ncomms6469.

Li C, Xiao Z, Chen Z, Zhang X, Li J, Wu X, Li X, Yi H, Li M, Zhu G, Liang S. 2006. Proteome analysis of human lung squamous carcinoma. Proteomics 6:547–558. DOI: 10.1002/pmic.200500256.

Li W, Zhang X, Wang W, Sun R, Liu B, Ma Y, Zhang W, Ma L, Jin Y, Yang S. 2017. Quantitative proteomics analysis of mitochondrial proteins in lung adenocarcinomas and normal lung tissue using iTRAQ and tandem mass spectrometry. American Journal of Translational Research 9:3918–3934.

Stewart PA, Fang B, Slebos RJC, Zhang G, Borne AL, Fellows K, Teer JK, Chen YA, Welsh E, Eschrich SA, Haura EB, Koomen JM. 2017. Relative protein quantification and accessible biology in lung tumor proteomes from four LC-MS/MS discovery platforms. Proteomics 17:1600300. DOI: 10.1002/pmic.201600300.

Tenzer S, Leidinger P, Backes C, Huwer H, Hildebrandt A, Lenhof H-P, Wesse T, Franke A, Meese E, Keller A. 2016. Integrated quantitative proteomic and transcriptomic analysis of lung tumor and control tissue: A lung cancer showcase. Oncotarget 7:14857–14870. DOI: 10.18632/oncotarget.7562.

Wang K, Li H, Chen R, Zhang Y, Sun X-X, Huang W, Bian H, Chen Z-N. 2017. Combination of CALR and PDIA3 is a potential prognostic biomarker for non-small cell lung cancer. Oncotarget 8:96945–96957. DOI: 10.18632/oncotarget.18547.

Xu J-Y, Zhang C, Wang X, Zhai L, Ma Y, Mao Y, Qian K, Sun C, Liu Z, Jiang S, Wang M, Feng L, Zhao L, Liu P, Wang B, Zhao X, Xie H, Yang X, Zhao L, Chang Y, Jia J, Wang X, Zhang Y, Wang Y, Yang Y, Wu Z, Yang L, Liu B, Zhao T, Ren S, Sun A, Zhao Y, Ying W, Wang F, Wang G, Zhang Y, Cheng S, Qin J, Qian X, Wang Y, Li J, He F, Xiao T, Tan M. 2020. Integrative proteomic characterization of human lung adenocarcinoma. Cell 182:245–261. DOI: 10.1016/j.cell.2020.05.043.

Yang S, Chen L, Chan DW, Li QK, Zhang H. 2017. Protein signatures of molecular pathways in non-small cell lung carcinoma (NSCLC): Comparison of glycoproteomics and global proteomics. Clinical Proteomics 14:31. DOI: 10.1186/s12014-017-9166-9.

Yan X, Lan-Qin C, Long-Yu J, Zhu-Chu C, Gu-Qing Z, Can-E T, Guo-Qing L, Chao-Jun D, Fang P, Zhi-Qiang X, Cui L. 2012. Quantitative proteomic study of human lung squamous carcinoma and normal bronchial epithelial acquired by laser capture microdissection. Journal of Biomedicine and Biotechnology 2012:510418. DOI: 10.1155/2012/510418.

Zeng G-Q, Zhang P-F, Deng X, Yu F-L, Li C, Xu Y, Yi H, Li M-Y, Hu R, Zuo J-H, Li X-H, Wan X-X, Qu J-Q, He Q-Y, Li J-H, Ye X, Chen Y, Li J-Y, Xiao Z-Q. 2012. Identification of candidate biomarkers for early detection of human lung squamous cell cancer by quantitative proteomics. Molecular & Cellular Proteomics 11:M111.013946. DOI: 10.1074/mcp.M111.013946.

Zhang X, Li W, Hou Y, Niu Z, Zhong Y, Zhang Y, Yang S. 2014. Comparative membrane proteomic analysis between lung adenocarcinoma and normal tissue by iTRAQ labeling mass spectrometry. American Journal of Translational Research 6:267–280.

Zhang P-F, Zeng G-Q, Yi L-Z, Liu J-P, Wan X-X, Qu J-Q, Li J-H, Li C, Tang C-E, Hu R, Ye X, Chen Y, Chen Z-C, Xiao Z-Q. 2013. Identification of integrin β1 as a prognostic biomarker for human lung adenocarcinoma using 2D-LC-MS/MS combined with iTRAQ technology. Oncology Reports 30:341–349. DOI: 10.3892/or.2013.2477.

Zhuo H, Lyu Z, Su J, He J, Pei Y, Cheng X, Zhou N, Lu X, Zhou S, Zhao Y. 2014. Effect of lung squamous cell carcinoma tumor microenvironment on the CD105+ endothelial cell proteome. Journal of Proteome Research 13:4717–4729. DOI: 10.1021/pr5006229.