This vignette from the R package JMDplots version 1.2.19-9 shows chemical metrics for proteins that are differentially expressed in hyperosmotic compared to control conditions. The analysis is described in more detail in a paper (Dick et al., 2020). Abbreviations:
Differences are calculated as (median value for up-regulated proteins) - (median value for down-regulated proteins). Dashed lines enclose the 50% confidence region for highest probability density.
In the table, values of ΔZC, ΔnH2O, and ΔGRAVY are multiplied by 1000, values of ΔpI and ΔMW are multiplied by 100, and negative values are shown in bold. Abbreviations:
set | reference (description) | ndown | nup | ΔZC | ΔnH2O | ΔpI | ΔGRAVY | ΔnAA | ΔMW |
---|---|---|---|---|---|---|---|---|---|
a |
PNWB09 (Synechocystis sp. PCC6803 in 6% w/v NaCl vs no added salt)
|
77 | 55 | 4 | 25 | -8 | 27 | 72 | -120 |
b |
FTR+10 (Corynebacterium glutamicum in 750 mM NaCl vs control medium)
|
27 | 65 | 2 | 15 | -44 | -119 | 127 | 97 |
c |
LPK+13 (Lactobacillus johnsonii with vs without 0.1-0.3% bile salt)
|
123 | 88 | 26 | -65 | -68 | 67 | 78 | -62 |
d |
QHT+13 (Synechocystis sp. PCC 6803 Protein in 4% w/v vs 0% added NaCl for 24 h)
|
42 | 26 | -42 | -54 | -150 | 111 | -44 | 48 |
e |
QHT+13 (Synechocystis sp. PCC 6803 Protein in 4% w/v vs 0% added NaCl for 48 h)
|
46 | 62 | -17 | 29 | -25 | 3 | -192 | -46 |
f |
ADW+14 (Bifidobacterium longum BBMN68 Protein with vs without 0.75 g/l ox bile)
|
20 | 24 | 8 | 6 | 34 | 28 | 75 | -84 |
g |
KKG+14 (Escherichia coli Protein in NaCl (0.967 aw) vs control for immediate)
|
30 | 158 | -12 | -19 | 33 | 121 | 168 | 123 |
h |
KKG+14 (Escherichia coli Protein in NaCl (0.967 aw) vs control for 30 min)
|
21 | 162 | -15 | -20 | 76 | 140 | 122 | 139 |
i |
KKG+14 (Escherichia coli Protein in NaCl (0.967 aw) vs control for 80 min)
|
37 | 126 | -29 | -28 | 100 | 161 | 82 | 175 |
j |
KKG+14 (Escherichia coli Protein in NaCl (0.967 aw) vs control for 310 min)
|
12 | 399 | -2 | -31 | 57 | 48 | 130 | 127 |
k |
PBP+14 (Listeria monocytogenes in 3% NaCl vs control at 4.C)
|
54 | 86 | 16 | 1 | -16 | -50 | -48 | -86 |
l |
PBP+14 (Listeria monocytogenes in 3% NaCl vs control at 37.C)
|
60 | 25 | 3 | 3 | -4 | -16 | 18 | -49 |
m |
KLB+15 (Caulobacter crescentus Protein in 200 mM sucrose vs M2 minimal salts medium)
|
33 | 33 | 20 | -60 | 61 | 55 | 10 | -35 |
n |
KLB+15 (Caulobacter crescentus Protein in 40/50 mM NaCl vs M2 minimal salts medium)
|
33 | 27 | 19 | -48 | 70 | 75 | -2 | -80 |
o |
SKV+16 (Escherichia coli in Glucose vs LB)
|
743 | 282 | 5 | -13 | -8 | 14 | 2 | -43 |
p |
SKV+16 (Escherichia coli in Osmotic.stress.glucose vs LB)
|
978 | 343 | 6 | -8 | -21 | -19 | -50 | -73 |
q |
KAK+17 (Lactobacillus fermentum with vs without 1.2% w/v bile salts)
|
106 | 81 | 34 | -37 | -418 | 30 | 48 | -142 |
r |
LYS+17 (Lactobacillus salivarius LI01 with vs without 0.15% ox bile)
|
177 | 205 | 2 | -37 | 18 | 78 | 14 | 76 |
s |
HGC+18 (Lactobacillus casei BL23 in hyper-concentrated vs isotonic sweet whey)
|
116 | 64 | 13 | -51 | -54 | -15 | 33 | 1 |
t |
KSK+18 (Acidihalobacter prosperus DSM 14174 30 g/L / 5 g/L NaCl)
|
292 | 316 | -7 | 11 | -8 | 31 | -102 | -45 |
u |
LJC+18 (Listeria monocytogenes WT in 0.5 M NaCl vs control medium)
|
65 | 66 | -20 | -9 | -40 | 106 | 31 | 46 |
v |
LJC+18 (Listeria monocytogenes mutant in 0.5 M NaCl vs control medium)
|
37 | 30 | -13 | -11 | 42 | 127 | -93 | 99 |
w |
TSC18 (Caulobacter crescentus WT in 300 mM sucrose vs control)
|
91 | 28 | 5 | 2 | -95 | 36 | -207 | -16 |
x |
TSC18 (Caulobacter crescentus GsrN in 300 mM sucrose vs control)
|
99 | 107 | 2 | 19 | -78 | -7 | -244 | -29 |
y |
LWS+19 (Lactobacillus plantarum FS5-5 in 6-8% w/v vs 0% NaCl)
|
72 | 46 | 14 | -42 | -81 | -48 | 10 | 59 |
z |
MGF+19 (Staphylococcus aureus in 10% vs 0% NaCl)
|
88 | 58 | 33 | -38 | -211 | 58 | -114 | -32 |
A |
MGF+19 (Staphylococcus aureus in 20% vs 0% NaCl)
|
184 | 99 | 24 | 4 | -133 | 12 | -120 | -148 |
B |
AST+20 (Lactobacillus fermentum with vs without 0.3% to 1.5% w/v bile salts)
|
368 | 378 | -2 | -4 | -36 | -2 | 28 | 16 |
C |
GBR+20 (Propionibacterium freudenreichii CIRM129 in NaCl vs MMO)
|
90 | 74 | -15 | 35 | 25 | -104 | -50 | 138 |
D |
GBR+20 (Propionibacterium freudenreichii CIRM1025 in NaCl vs MMO)
|
64 | 78 | -9 | 13 | 11 | -37 | -82 | 127 |
a. Additional file 3: Table S2 of Pandhal et al. (2009). b. Supplementary Table 8 of Fränzel et al. (2010). Only proteins with consistent expression ratios (all > 1 or all < 1) at each time point (15, 60, and 180 min.) were included. c. Supporting Information Table 1 of Lee et al. (2013) (sheets “Up-Down Proteins” and “Unknown function”). d. e. Supplementary Tables S3A and S3B of Qiao et al. (2013). f. Table 1 (proteins) and supplemental Table S2 (genes) of An et al. (2014). g. h. i. j. Supporting Information Table S2 of Kocharunchitt et al. (2014). k. l. Supporting Information Table of Pittman et al. (2014), filtered to include proteins with p-value < 0.05. m. n. Additional file Table S2 of Kohler et al. (2015). o. p. Supplementary Table S6 of Schmidt et al. (2016), filtered to include proteins with fold change > 2 or < 0.5 for the ratios Glucose / LB (lysogeny broth) or Osmotic-stress glucose / LB. q. Supplementary Table 1 (sheets “0.76 fold down regulated” and “1.3 fold up regulated”) of Kaur et al. (2017). r. Supplemental Table S-2 of Lv et al. (2017), filtered to include proteins with log2 fold change > 1 or < -1 and p-value < 0.05. s. Supplementary Figure 1 of Huang et al. (2018). t. Supplementary Table 1 of Khaleque et al. (2018) (amino acid compositions computed from protein sequences in the list of gene annotations). u. v. Tables S1–S6 of Lee et al. (2018). For each of the wild-type and ∆sigB mutant, only proteins that were identified in multicellular vesicles in a single condition (0.5 M salt stress or without salt stress) were included. w. x. Extracted from proteinGroups.txt in PRIDE project PXD010072/MaxQuantOutput.tar.gz (Tien, Stein & Crosson, 2018), filtered to include proteins with non-zero LFQ intensity values for all replicates in each experiment; the medians of these values were used to compute fold changes; proteins with fold change > 1.5 or < 2/3 were kept. y. Table 2 of Li et al. (2019). z. A. Supplementary Tables S4 and S5 of Ming et al. (2019), filtered to include proteins with fold change >= 2 or <= 0.5. B. Supplementary Table 1 (sheets “>2.0 Fold” and “< 0.5 Fold”) of Ali et al. (2020). C. D. Supplementary Table 1 of Gaucher et al. (2020) (column “MMO+NaCl/MMO” for CIRM129 and CIRM1025).
Ali SA, Singh P, Tomar SK, Mohanty AK, Behare P. 2020. Proteomics fingerprints of systemic mechanisms of adaptation to bile in Lactobacillus fermentum. Journal of Proteomics 213:103600. DOI: 10.1016/j.jprot.2019.103600.
An H, Douillard FP, Wang G, Zhai Z, Yang J, Song S, Cui J, Ren F, Luo Y, Zhang B, Hao Y. 2014. Integrated transcriptomic and proteomic analysis of the bile stress response in a centenarian-originated probiotic Bifidobacterium longum BBMN68. Molecular & Cellular Proteomics 13:2558–2572. DOI: 10.1074/mcp.M114.039156.
Fränzel B, Trötschel C, Rückert C, Kalinowski J, Poetsch A, Wolters DA. 2010. Adaptation of Corynebacterium glutamicum to salt-stress conditions. Proteomics 10:445–457. DOI: 10.1002/pmic.200900482.
Gaucher F, Bonnassie S, Rabah H, Leverrier P, Pottier S, Jardin J, Briard-Bion V, Marchand P, Jeantet R, Blanc P, Jan G. 2020. Data from a proteomic analysis highlight different osmoadaptations in two strain of Propionibacterium freudenreichii. Data in Brief 28:104932. DOI: 10.1016/j.dib.2019.104932.
Huang S, Gaucher F, Cauty C, Jardin J, Le Loir Y, Jeantet R, Chen XD, Jan G. 2018. Growth in hyper-concentrated sweet whey triggers multi stress tolerance and spray drying survival in Lactobacillus casei BL23: From the molecular basis to new perspectives for sustainable probiotic production. Frontiers in Microbiology 9:2548. DOI: 10.3389/fmicb.2018.02548.
Kaur G, Ali SA, Kumar S, Mohanty AK, Behare P. 2017. Label-free quantitative proteomic analysis of Lactobacillus fermentum NCDC 400 during bile salt exposure. Journal of Proteomics 167:36–45. DOI: 10.1016/j.jprot.2017.08.008.
Khaleque HN, Shafique R, Kaksonen AH, Boxall NJ, Watkin ELJ. 2018. Quantitative proteomics using SWATH-MS identifies mechanisms of chloride tolerance in the halophilic acidophile Acidihalobacter prosperus DSM 14174. Research in Microbiology 169:638–648. DOI: 10.1016/j.resmic.2018.07.002.
Kocharunchitt C, King T, Gobius K, Bowman JP, Ross T. 2014. Global genome response of Escherichia coli O157:H7 Sakai during dynamic changes in growth kinetics induced by an abrupt downshift in water activity. PLOS One 9:e90422. DOI: 10.1371/journal.pone.0090422.
Kohler C, Lourenço RF, Bernhardt J, Albrecht D, Schüler J, Hecker M, Gomes SL. 2015. A comprehensive genomic, transcriptomic and proteomic analysis of a hyperosmotic stress sensitive α-proteobacterium. BMC Microbiology 15:1–15. DOI: 10.1186/s12866-015-0404-x.
Lee T, Jun SH, Choi CW, Kim SI, Lee JC, Shin JH. 2018. Salt stress affects global protein expression profiles of extracellular membrane-derived vesicles of Listeria monocytogenes. Microbial Pathogenesis 115:272–279. DOI: 10.1016/j.micpath.2017.12.071.
Lee JY, Pajarillo EAB, Kim MJ, Chae JP, Kang D-K. 2013. Proteomic and transcriptional analysis of Lactobacillus johnsonii PF01 during bile salt exposure by iTRAQ shotgun proteomics and quantitative RT-PCR. Journal of Proteome Research 12:432–443. DOI: 10.1021/pr300794y.
Li M, Wang Q, Song X, Guo J, Wu J, Wu R. 2019. iTRAQ-based proteomic analysis of responses of Lactobacillus plantarum fs5-5 to salt tolerance. Annals of Microbiology 69:377–394. DOI: 10.1007/s13213-018-1425-0.
Lv L-X, Yan R, Shi H-Y, Shi D, Fang D-Q, Jiang H-Y, Wu W-R, Guo F-F, Jiang X-W, Gu S-L, Chen Y-B, Yao J, Li L-J. 2017. Integrated transcriptomic and proteomic analysis of the bile stress response in probiotic Lactobacillus salivarius LI01. Journal of Proteomics 150:216–229. DOI: 10.1016/j.jprot.2016.08.021.
Ming T, Geng L, Feng Y, Lu C, Zhou J, Li Y, Zhang D, He S, Li Y, Cheong L, Su X. 2019. iTRAQ-based quantitative proteomic profiling of Staphylococcus aureus under different osmotic stress conditions. Frontiers in Microbiology 10:1082. DOI: 10.3389/fmicb.2019.01082.
Pandhal J, Noirel J, Wright PC, Biggs CA. 2009. A systems biology approach to investigate the response of Synechocystis sp. PCC6803 to a high salt environment. Saline Systems 5:8. DOI: 10.1186/1746-1448-5-8.
Pittman JR, Buntyn JO, Posadas G, Nanduri B, Pendarvis K, Donaldson JR. 2014. Proteomic analysis of cross protection provided between cold and osmotic stress in Listeria monocytogenes. Journal of Proteome Research 13:1896–1904. DOI: 10.1021/pr401004a.
Qiao J, Huang S, Te R, Wang J, Chen L, Zhang W. 2013. Integrated proteomic and transcriptomic analysis reveals novel genes and regulatory mechanisms involved in salt stress responses in Synechocystis sp. PCC 6803. Applied Microbiology and Biotechnology 97:8253–8264. DOI: 10.1007/s00253-013-5139-8.
Schmidt A, Kochanowski K, Vedelaar S, Ahrné E, Volkmer B, Callipo L, Knoops K, Bauer M, Aebersold R, Heinemann M. 2016. The quantitative and condition-dependent Escherichia coli proteome. Nature Biotechnology 34:104–110. DOI: 10.1038/nbt.3418.
Tien MZ, Stein BJ, Crosson S. 2018. Coherent feedforward regulation of gene expression by Caulobacter σT and GsrN during hyperosmotic stress. Journal of Bacteriology 200:e00349–18. DOI: 10.1128/JB.00349-18.