This vignette from the R package JMDplots version 1.2.19-9 shows chemical metrics for proteins that are differentially expressed in prostate cancer compared to normal tissue. The analysis is described in more detail in a paper (Dick, 2021). Abbreviations:
Differences are calculated as (median value for up-regulated proteins) - (median value for down-regulated proteins). Dashed lines enclose the 50% confidence region for highest probability density.
In the table, values of ΔZC and ΔnH2O are multiplied by 1000, values of ΔMW are multiplied by 100, and negative values are shown in bold. Abbreviations:
set | reference (description) | ndown | nup | ΔZC | ΔnH2O | ΔnAA | ΔMW |
---|---|---|---|---|---|---|---|
a |
GTR+08 (PCa / BPH)
|
35 | 29 | -32 | 4 | -150 | 146 |
b |
KPB+10 (PCa / adjacent benign)
|
68 | 69 | -17 | 6 | -124 | 129 |
c |
HZH+12 (PCa / adjacent benign Protein)
|
22 | 37 | -15 | 26 | 50 | -231 |
d |
JHZ+13 (PCa / adjacent benign)
|
23 | 36 | -22 | 30 | 72 | -84 |
e |
LCS+14 (glycoproteins PCa / normal)
|
82 | 138 | -8 | 9 | -106 | -6 |
f |
CZL+16 (protein expression bioinformatics)
|
74 | 157 | -41 | -10 | -56 | 50 |
g |
IWT+16 (FFPE tumor / adjacent benign)
|
223 | 426 | -27 | 36 | 222 | 116 |
h |
GLZ+18 (acinar PCa / matched BPH)
|
87 | 114 | -33 | 30 | -59 | 22 |
i |
GLZ+18 (ductal PCa / matched BPH)
|
347 | 303 | -33 | 10 | -63 | 19 |
j |
LAJ+18 (PC / BPH)
|
273 | 220 | -35 | 22 | 110 | 86 |
k |
LAJ+18 (CRPC / BPH)
|
313 | 193 | -25 | 24 | 7 | 19 |
l |
MAN+18 (PCa / BPH)
|
44 | 33 | 3 | -28 | 36 | -25 |
m |
KRN+19 (PCa G1 / BPH)
|
32 | 43 | -24 | 28 | 67 | -7 |
n |
KRN+19 (PCa G2 / BPH)
|
30 | 22 | -39 | 10 | 212 | 226 |
o |
KRN+19 (PCa G3 / BPH)
|
43 | 24 | -36 | 29 | 189 | 175 |
p |
KRN+19 (PCa G4 / BPH)
|
44 | 51 | -19 | 20 | 57 | 113 |
q |
KRN+19 (PCa G5 / BPH)
|
22 | 24 | -15 | 48 | 47 | -35 |
r |
MMF+20 (FFPE PCa / adjacent benign GS=6)
|
40 | 136 | -16 | -35 | -141 | 11 |
s |
MMF+20 (FFPE PCa / adjacent benign GS=6 and GS>=8)
|
37 | 143 | -1 | -1 | 18 | -55 |
t |
TOT+19 (FFPE TMA PCa / normal)
|
36 | 86 | -32 | 34 | -226 | 28 |
u |
ZYW+19 (OCT LG PCa / adjacent normal)
|
143 | 54 | -43 | 6 | -141 | 116 |
v |
ZYW+19 (OCT HG PCa / adjacent normal)
|
215 | 94 | -17 | 40 | -208 | 31 |
w |
KHN+20 (PCa / control)
|
227 | 125 | -19 | 40 | 47 | -85 |
x |
LDM+20 (PCa / BPH)
|
73 | 72 | -20 | 45 | 2 | -55 |
y |
SHC+20 (FFPE PCa / BPH)
|
58 | 308 | -34 | 36 | -246 | 52 |
z |
ZKL+20 (mouse Pten-KO / WT)
|
48 | 55 | 2 | 44 | 49 | -32 |
A |
ZZX+20 (tumor / normal CiRT)
|
104 | 1451 | -23 | 14 | -241 | 90 |
Gene names or other identifiers were converted to UniProt accession numbers using the UniProt mapping tool.
a. Table 2 of Garbis et al. (2008). b. Supplementary Tables 3 and 4 of Khan et al. (2010). c. Table S2 of Han et al. (2012). d. Table S1 of Jiang et al. (2013). e. Supplemental Table S7 of Liu et al. (2014). f. Supplementary Table 1 Chen et al. (2016) (proteins recorded with only Down-regulation or Up-regulation). g. Supplementary Table S3 of Iglesias-Gato et al. (2016), filtered to include proteins listed with FDR < 0.1. h. i. Extracted from Table S4 Guo et al. (2018). Values were quantile normalized, then ratios were calculated between the median values for each cancer type (acinar and ductal) and corresponding normal tissue; ratios > 1.5 or < 2/3 were used to identify differentially expressed proteins. j. k. Extracted from Supplementary Data 1 of Latonen et al. (2018) (sheet “Area-proteins”) by applying quantile normalization to peak areas then calculating median values across all runs and samples for each of BPH , PC (primary prostate cancer), and CRPC (castration resistant prostate cancer). A cutoff of 2-fold in ratios of medians (PC / BPH or CRPC / BPH) was used to identify differentially expressed proteins. l. Table 2 of Martiny et al. (2018). m. n. o. p. q. Supporting Information Table S3 of Kawahara et al. (2019) (G1–G5: PCa grades). r. s. Tables S4d (GS = 6) and S4f (GS ≥ 8 or GS = 6) of Mantsiou et al. (2020) (GS: Gleason Score). t. Supplementary Table S3a of Turiák et al. (2019). u. v. Table S5 of Zhou et al. (2019) (LG: low-grade PCa; HG: high-grade PCa). w. Supplemental Table S2 of Kwon et al. (2020), filtered to include proteins with log2 fold change > 1 or < -1 in at least one experiment. x. Table S2 of Latosinska et al. (2020). y. Table S2, Sheet D:S3-SWATH_protein_matrix of Sun et al. (2020), filtered to include proteins quantified in at least 50% of both tumor and normal samples and with median fold change > 2 or < 0.5. z. Table S4 of Zhang et al. (2020) (Pten gene knockout vs wild-type). A. Supplementary Tables S3E–S3F of Zhu et al. (2020).
Chen C, Zhang L-G, Liu J, Han H, Chen N, Yao A-L, Kang S-S, Gao W-X, Shen H, Zhang L-J, Li Y-P, Cao F-H, Li Z-G. 2016. Bioinformatics analysis of differentially expressed proteins in prostate cancer based on proteomics data. OncoTargets and Therapy 9:1545–1557. DOI: 10.2147/OTT.S98807.
Garbis SD, Tyritzis SI, Roumeliotis T, Zerefos P, Giannopoulou EG, Vlahou A, Kossida S, Diaz J, Vourekas S, Tamvakopoulos C, Pavlakis K, Sanoudou D, Constantinides CA. 2008. Search for potential markers for prostate cancer diagnosis, prognosis and treatment in clinical tissue specimens using amine-specific isobaric tagging (iTRAQ) with two-dimensional liquid chromatography and tandem mass spectrometry. Journal of Proteome Research 7:3146–3158. DOI: 10.1021/pr800060r.
Guo T, Li L, Zhong Q, Rupp NJ, Charmpi K, Wong CE, Wagner U, Rueschoff JH, Jochum W, Fankhauser CD, Saba K, Poyet C, Wild PJ, Aebersold R, Beyer A. 2018. Multi-region proteome analysis quantifies spatial heterogeneity of prostate tissue biomarkers. Life Science Alliance 1:e201800042. DOI: 10.26508/lsa.201800042.
Han Z-D, Zhang Y-Q, He H-C, Dai Q-S, Qin G-Q, Chen J-H, Cai C, Fu X, Bi X-C, Zhu J-G, Liao D-J, Lu X-P, Mo Z-Y, Zhu Y-P, Zhong W-D. 2012. Identification of novel serological tumor markers for human prostate cancer using integrative transcriptome and proteome analysis. Medical Oncology 29:2877–2888. DOI: 10.1007/s12032-011-0149-9.
Iglesias-Gato D, Wikström P, Tyanova S, Lavallee C, Thysell E, Carlsson J, Hägglöf C, Cox J, Andrén O, Stattin P, Egevad L, Widmark A, Bjartell A, Collins CC, Bergh A, Geiger T, Mann M, Flores-Morales A. 2016. The proteome of primary prostate cancer. European Urology 69:942–952. DOI: 10.1016/j.eururo.2015.10.053.
Jiang F-N, He H-C, Zhang Y-Q, Yang D-L, Huang J-H, Zhu Y-X, Mo R-J, Chen G, Yang S-B, Chen Y-R, Zhong W-D, Zhou W-L. 2013. An integrative proteomics and interaction network-based classifier for prostate cancer diagnosis. PLOS One 8:e63941. DOI: 10.1371/journal.pone.0063941.
Kawahara R, Recuero S, Nogueira FCS, Domont GB, Leite KRM, Srougi M, Thaysen-Andersen M, Palmisano G. 2019. Tissue proteome signatures associated with five grades of prostate cancer and benign prostatic hyperplasia. Proteomics 19:1900174. DOI: 10.1002/pmic.201900174.
Khan AP, Poisson LM, Bhat VB, Fermin D, Zhao R, Kalyana-Sundaram S, Michailidis G, Nesvizhskii AI, Omenn GS, Chinnaiyan AM, Sreekumar A. 2010. Quantitative proteomic profiling of prostate cancer reveals a role for miR-128 in prostate cancer. Molecular & Cellular Proteomics 9:298–312. DOI: 10.1074/mcp.M900159-MCP200.
Kwon OK, Ha Y-S, Na A-Y, Chun SY, Kwon TG, Lee JN, Lee S. 2020. Identification of novel prognosis and prediction markers in advanced prostate cancer tissues based on quantitative proteomics. Cancer Genomics - Proteomics 17:195–208. DOI: 10.21873/cgp.20180.
Latonen L, Afyounian E, Jylha A, Nattinen J, Aapola U, Annala M, Kivinummi KK, Tammela TTL, Beuerman RW, Uusitalo H, Nykter M, Visakorpi T. 2018. Integrative proteomics in prostate cancer uncovers robustness against genomic and transcriptomic aberrations during disease progression. Nature Communications 9:1176. DOI: 10.1038/s41467-018-03573-6.
Latosinska A, Davalieva K, Makridakis M, Mullen W, Schanstra JP, Vlahou A, Mischak H, Frantzi M. 2020. Molecular changes in tissue proteome during prostate cancer development: Proof-of-principle investigation. Diagnostics 10:655. DOI: 10.3390/diagnostics10090655.
Liu Y, Chen J, Sethi A, Li QK, Chen L, Collins B, Gillet LCJ, Wollscheid B, Zhang H, Aebersold R. 2014. Glycoproteomic analysis of prostate cancer tissues by SWATH mass spectrometry discovers N-acylethanolamine acid amidase and protein tyrosine kinase 7 as signatures for tumor aggressiveness. Molecular & Cellular Proteomics 13:1753–1768. DOI: 10.1074/mcp.M114.038273.
Mantsiou A, Makridakis M, Fasoulakis K, Katafigiotis I, Constantinides CA, Zoidakis J, Roubelakis MG, Vlahou A, Lygirou V. 2020. Proteomics analysis of formalin fixed paraffin embedded tissues in the investigation of prostate cancer. Journal of Proteome Research 19:2631–2642. DOI: 10.1021/acs.jproteome.9b00587.
Martiny PB, Alcoba DD, Neto BS, Carvalho PC, Brum IS. 2018. A proteomic glimpse into the oncogenesis of prostate cancer. Journal of Applied Biomedicine 16:328–336. DOI: 10.1016/j.jab.2018.05.003.
Sun R, Hunter C, Chen C, Ge W, Morrice N, Liang S, Zhu T, Yuan C, Ruan G, Zhang Q, Cai X, Yu X, Chen L, Dai S, Luan Z, Aebersold R, Zhu Y, Guo T. 2020. Accelerated protein biomarker discovery from FFPE tissue samples using single-shot, short gradient microflow SWATH MS. Journal of Proteome Research 19:2732–2741. DOI: 10.1021/acs.jproteome.9b00671.
Turiák L, Ozohanics O, Tóth G, Ács A, Révész Á, Vékey K, Telekes A, Drahos L. 2019. High sensitivity proteomics of prostate cancer tissue microarrays to discriminate between healthy and cancerous tissue. Journal of Proteomics 197:82–91. DOI: 10.1016/j.jprot.2018.11.009.
Zhang J, Kim S, Li L, Kemp CJ, Jiang C, Lü J. 2020. Proteomic and transcriptomic profiling of Pten gene-knockout mouse model of prostate cancer. The Prostate 80:588–605. DOI: 10.1002/pros.23972.
Zhou B, Yan Y, Wang Y, You S, Freeman MR, Yang W. 2019. Quantitative proteomic analysis of prostate tissue specimens identifies deregulated protein complexes in primary prostate cancer. Clinical Proteomics 16:15. DOI: 10.1186/s12014-019-9236-2.
Zhu T, Zhu Y, Xuan Y, Gao H, Cai X, Piersma SR, Pham TV, Schelfhorst T, Haas RRGD, Bijnsdorp IV, Sun R, Yue L, Ruan G, Zhang Q, Hu M, Zhou Y, Van Houdt WJ, Le Large TYS, Cloos J, Wojtuszkiewicz A, Koppers-Lalic D, Böttger F, Scheepbouwer C, Brakenhoff RH, van Leenders GJLH, Ijzermans JNM, Martens JWM, Steenbergen RDM, Grieken NC, Selvarajan S, Mantoo S, Lee SS, Yeow SJY, Alkaff SMF, Xiang N, Sun Y, Yi X, Dai S, Liu W, Lu T, Wu Z, Liang X, Wang M, Shao Y, Zheng X, Xu K, Yang Q, Meng Y, Lu C, Zhu J, Zheng J, Wang B, Lou S, Dai Y, Xu C, Yu C, Ying H, Lim TK, Wu J, Gao X, Luan Z, Teng X, Wu P, Huang S, Tao Z, Iyer NG, Zhou S, Shao W, Lam H, Ma D, Ji J, Kon OL, Zheng S, Aebersold R, Jimenez CR, Guo T. 2020. DPHL: A DIA pan-human protein mass spectrometry library for robust biomarker discovery. Genomics, Proteomics & Bioinformatics 18:104–119. DOI: 10.1016/j.gpb.2019.11.008.