References for thermodynamic data in CHNOSZ 2.1.0 (2024-02-11)

Click on a column header to sort, or on a citation to open the URL in new window.

Column 'number' gives the number of times each reference appears in thermo()$OBIGT.

See also the vignette OBIGT thermodynamic database.

number key author year citation note
1 proton OBIGT 1997 "The conventional standard molal properties of the hydrogen ion are zero at any pressure and temperature" [@JOH92]
MWKL17.1 G. D. Miron et al. 2017 ΔG°f values
88 SLOP98.10 E. L. Shock et al. 1998 "Corrected values based on data from @HSS95 "
5 SLOP98.11 E. L. Shock et al. 1998 "Data and parameters as used by @MS97. "
32 SLOP16.1 E. L. Shock et al. 2016 "Enthalpy changed to be compatible with the equation ΔH=ΔG+TΔS for the formation reaction from elements."
55 SLOP16.6 E. L. Shock et al. 2016 "Enthalpy corrected to be compatible with the equation ΔG=ΔH-TΔS for the formation reaction from elements."
6 SLOP98.8 E. L. Shock et al. 1998 "These data were used in @SK95, but were not tabulated in the paper."
DEW17.05 D. A. Sverjensky et al. 2017 (Al+3: parameters in DEW spreadsheet are the same as in @SSWS97)
DEW17.04 D. A. Sverjensky et al. 2017 (Ar, Xe: parameters in DEW spreadsheet are the same as in @SHS89)
DEW19.5 D. A. Sverjensky et al. 2019 (Ca+2: values listed in DEW spreadsheet)
DEW19.6 D. A. Sverjensky et al. 2019 (Fe+2: HKF a1-a4 parameters taken from @HS19, which are different from 2019 DEW spreadsheet)
DEW17.01 D. A. Sverjensky et al. 2017 (acetic acid, glycine, methanol, propanoic acid, propanol: parameters in DEW spreadsheet are the same as in @PS01)
DEW17.02 D. A. Sverjensky et al. 2017 (ethanol: parameters in DEW spreadsheet are different from @PS01; no comment provided)
DEW17.03 D. A. Sverjensky et al. 2017 (parameters in DEW spreadsheet are the same as in @FDM+14)
DEW19.1 D. A. Sverjensky et al. 2019 (values from @HS19 listed in DEW spreadsheet)
DEW19 D. A. Sverjensky et al. 2019 (values listed in DEW spreadsheet)
DEW17.14 D. A. Sverjensky et al. 2017 29/11/16: Fit to @TDDZ00 with revised volume increased in order that a1 of the complex a bit greater than the sum of the a1 values of the ions
30 LD12 D. E. LaRowe and J. M. Dick 2012 4-hydroxyproline, 5-hydroxylysine, 4 dipeptides, and sidechain and backbone groups in proteins
SK93.1 E. L. Shock and C. M. Koretsky 1993 Ag-, Au-, Cu(I)- and Al-acetate complexes
SH88.3 E. L. Shock and H. C. Helgeson 1988 Ag+
1 AVZP06 N. N. Akinfiev et al. 2006 AgCl3-2
PSK99.1 P. Prapaipong, E. L. Shock and C. M. Koretsky 1999 Al(Mal)+ and Al(Oxal)+
MWKH16.1 G. D. Miron et al. 2016 Al(OH)3 and HSiO3- derived from literature data
SSWS97.4 E. L. Shock, D. C. Sassani et al. 1997 Al+3 and Al-hydroxide complexes
8 NA03 D. K. Nordstrom and D. G. Archer 2003 Arsenic thermodynamic data and environmental geochemistry. In Arsenic in Groundwater, eds. Welch and Stollenwerk, Kluwer As oxide and sulfide minerals
1 ZZL+16.1 K. Zimmer et al. 2016 As(α): V listed in spronsbl.dat
2 PPB+08.1 E. Perfetti et al. 2008 As(OH)3 and AsO(OH)3
10 SSW01 M. D. Schulte, E. L. Shock and R. H. Wood 2001 AsH3, CF4, CH3F, Cl2, ClO2, N2O, NF3, NO, PH3, and SF6
SSH97.1 D. A. Sverjensky, E. L. Shock and H. C. Helgeson 1997 Au(HS)2- and Ag(HS)2-
SSH97.3 D. A. Sverjensky, E. L. Shock and H. C. Helgeson 1997 Au-, Ag-, Cu- and Zn-chloride complexes
SSWS97.2 E. L. Shock, D. C. Sassani et al. 1997 Au+ and Cu+
1 OBIGT.3 J. M. Dick 2017 AuCl4- renamed to AuCl4-3
DEW17.33 D. A. Sverjensky et al. 2017 August 16th, 2013 fit to @BL06
AP14 N. N. Akinfiev and A. V. Plyasunov 2014 B(OH)3, Si(OH)4, and As(OH)3
SHA14.2 D. A. Sverjensky et al. 2014 BO(OH): Revised May 2013
SHA14.4 D. A. Sverjensky et al. 2014 BO2-: revised a1-a4 using delkappan for BO2- instead of B(OH)4- used by @SH88; @SSWS97
DEW17.5 D. A. Sverjensky et al. 2017 BaCl+, CaCl+, CaCl2: with new V from the sum of a1 values of ions
3 SM93 E. L. Shock and W. B. McKinnon 1993 CO, HCN, urea
FDM+14 S. Facq et al. 2014 CO2, HCO3-, CO3-2, CaCO3, Ca+2
SPRONS92.2 H. C. Helgeson et al. 1992 sprons92.dat computer data file Ca-bearing minerals; "Gibbs free energies and enthalpies were corrected to be consistent with updated values of Gibbs free energies of Ca2+ and CO32- [@SH88] together with the solubilities of calcite and aragonite reported by @PB82 "
DEW19.3 D. A. Sverjensky et al. 2019 CaO: Fitted by Dimitri to high PT retrievals from Fang
DEW17.10 D. A. Sverjensky et al. 2017 CaSO4: revised using exptl V and pred. a1 from new correlation
4 LBT+11 W. Liu et al. 2011 Co-chloride complexes
2 ZZL+16.2 K. Zimmer et al. 2016 Cp parameters listed in spronsbl.dat
OH90 E. H. Oelkers and H. C. Helgeson 1990 Debye-Hückel extended term parameter (b$\gamma$)
10 ZS92 C. Zhu and D. A. Sverjensky 1982 F,Cl,OH biotite and apatite endmembers. GHS and V were taken from Table 6 of @ZS92; heat capacity and volume parameters from `berman.dat`.
1 VPV05 O. Vidal, T. Parra and P. Viellard 2005 Fe-amesite
LEB+06 W. Liu et al. 2006 FeCl2+, FeCl3, FeCl4-
DEW17.15 D. A. Sverjensky et al. 2017 FeCl2+, FeCl4-: 29/11/16: Fit to @LEB+06 with revised volume increased in order that a1 of the complex a bit greater than the sum of the a1 values of the ions
DEW17.16 D. A. Sverjensky et al. 2017 FeCl3: 29/11/16: Fit to @LEB+06 with revised volume increased in order that a1 of the complex is equal to the sum of the a1 values of the ions
TDDZ00 B. R. Tagirov et al. 2000 FeCl+2
DEW17.13 D. A. Sverjensky et al. 2017 FeOH+, FeO, HFeO2-: 31/1/17: V from estimate to have similar behavior to MgO,aq
DEW17.26 D. A. Sverjensky et al. 2017 Fit to @SBS14 & @SH77; plus revised V increased so that a1 of the complex is the sum of the a1 values of the ions
SHA14.3 D. A. Sverjensky et al. 2014 Fitted to @HP97 data with a1 pred. from the sum of the ions and used to predict the volume
9 SHD91 D. A. Sverjensky, J. J. Hemley and W. M. D'Angelo 1991 G and H revisions for K- and Al-bearing silicates
17 OBIGT.1 J. M. Dick 2017 GHS (Tr) of the polymorph that is stable at 298.15 K was combined with Htr and the Cp coefficients to calculate the metastable GHS (Tr) of the polymorphs that are stable at higher temperatures.
OBIGT.8 J. M. Dick 2019 GHS recalculated by adding difference from SiO2 [@SSH97] to updated values for SiO2 [@AS04]
19 DLH06.2 J. M. Dick, D. E. LaRowe and H. C. Helgeson 2006 Gly-X-Gly tripeptides Cp, V, and HKF c1, c2, ω parameters
SH88.2 E. L. Shock and H. C. Helgeson 1988 H2AsO3-
1 HGK84 L. Haar and J. S. Gallagher and G. S. Kell 1984 H2O
1 JOH92 J. W. Johnson and E. H. Oelkers and H. C. Helgeson 1992 H2O
1 LXW21 X. Liu, C. Xiao and Y. Wang 2021 H2WO4
RS87 J. R. Ruaya and T. M. Seward 1987 HCl
DEW17.21 D. A. Sverjensky et al. 2017 HSO3-: revised using published estimated V and pred. a1 from new correlation
SSH97.2 D. A. Sverjensky, E. L. Shock and H. C. Helgeson 1997 HSiO3-
1 OBIGT.5 J. M. Dick 2017 Incorrect values of HKF a1--a4 parameters for [-CH2NH2] were printed in Table 6 of @DLH06; corrected values are used here.
SH88.4 E. L. Shock and H. C. Helgeson 1988 K+, Na+, Ca+2, Mg+2, Cl-, and OH-
PH97 V. A. Pokrovskii and H. C. Helgeson 1997 KAl2O
OH88 E. H. Oelkers and H. C. Helgeson 1988 KCl
HP97 P. C. Ho and D. A. Palmer 1997 KOH
SGX+06 A. V. Sharygin et al. 2006 KSO4-
15 AZ01 N. N. Akinfiev and A. V. Zotov 2001 M+, MCl2-, M(OH)2-, MCl, and MOH (M = Au+, Ag+, or Cu+)
6 AZ10 N. N. Akinfiev and A. V. Zotov 2010 MHS and M(HS)2- (M = Au+, Ag+, or Cu+)
DEW17.23 D. A. Sverjensky et al. 2017 May, 2017 Fitted to logKs from @OH88 + retrieved logKs from Hemley experiments at 1.0 kb using the HCl referred to above
SBS14 A. Stefánsson, P. Benézéth and J. Schott 2014 Mg(HCO3)+
41 LH06b D. E. LaRowe and H. C. Helgeson 2006 Mg-complexed adenosine nucleotides (ATP), NAD, and NADP
DEW17.27 D. A. Sverjensky et al. 2017 MgCO3: @SSH97 revised volume increased in order that a1 of the complex is the sum of the a1 values of the ions; and Cp revised using isocoulombic reln with CaCO3,aq; also omega is set to +0.3 as for all neutral metal complexes.
DEW19.2 D. A. Sverjensky et al. 2019 MgOH+: Revised by Dimitri, January, 2019; with minimum volume needed
ARHB06 C. Akilan et al. 2006 MgSO4
2 MS97 T. M. McCollom and E. L. Shock 1997 MgSO4, NaSO4-, and HCl
2 WEP+82.1 D. D. Wagman, W. H. Evans et al. 1982 Mn(OH)2 (amorphous) and MgSO4
1 SUF+98 H. Senoh et al. 1998 Mn(OH)2: Cp coefficients from linear fit to values estimated by @SUF+98
2 AS01 J. P. Amend and E. L. Shock 2001 NO and N2O
1 DPS+96 I. Diakonov, G. Pokrovski et al. 1996 NaAl(OH)4
SBS13 A. Stefánsson, P. Benézéth and J. Schott 2013 NaCO3-
DEW17.30 D. A. Sverjensky et al. 2017 NaCO3-: Fit to @SBS13 (80 to 200 C) & @GTS61 (at 25 C) to get G, S and Cp; with a1 pred. from the sum of the ions and used to predict the volume
SSH97.5 D. A. Sverjensky, E. L. Shock and H. C. Helgeson 1997 NaHSiO3, CaHSiO3+, and MgHSiO3+
DEW17.32 D. A. Sverjensky et al. 2017 NaOH: Fitted to @HP97 data with a1 pred. from the sum of the ions and used to predict the volume
10 AKK+20 N. N. Akinfiev et al. 2020 Nb and Ta species
1 electron OBIGT 2006 Non-zero entropy of the electron based on the hydrogen-ion convention
AML10.1 M. Accornero, L. Marini and M. Lelli 2010 Np- and Am-chromate complexes
BL06 A. V. Bandura and S. N. Lvov 2006 OH-
SS98a.3 D. C. Sassani and E. L. Shock 1998 Pd+2 and Pt+2 and their complexes
11 TBZ+13 B. R. Tagirov et al. 2013 Pd+2 and complexes
5 TBB15 B. R. Tagirov et al. 2015 Pt+2 and complexes
DEW17.19 D. A. Sverjensky et al. 2017 Regression of @RS87 & @TZA97 with new full correlations
DEW17.17 D. A. Sverjensky et al. 2017 Revised 1/22/15 based on V at 25 C from @ZW07 and predicted a1, a2, and a4; c1 and c2 from fits to delCpr protonation of @ZW07; S from fitting temperature dependence of logK from @ZW07; omega predicted from S using ion correlation.
DEW17.18 D. A. Sverjensky et al. 2017 Revised 1/22/15 based on fitting Cp and V vs T data from @HDM+94 + revised correlation for a1 from @SHA14; omega from delCPr above 100 °C [@ZW07]; G, H, and S from @AH97b
DEW17.25 D. A. Sverjensky et al. 2017 Revised G, S and Cp to fit @Noy07 & @SGX+06 with a1 of the complex equal to the sum of the a1 values of the ions
1 SS98a.2 D. C. Sassani and E. L. Shock 1998 Rh+3
DEW17.29 D. A. Sverjensky et al. 2017 S, Cp, V, omega from fit to @ARHB06 and @FDM94
DEW17.36 D. A. Sverjensky et al. 2017 S3-: Regression of data from @PD15; Feb. 2015
DEW17.38 D. A. Sverjensky et al. 2017 SO2: @SHS89 with revised a1 predicted as a complex from delVn
SHS89.1 E. L. Shock, H. C. Helgeson and D. A. Sverjensky 1989 SiO2
SHA14 D. A. Sverjensky et al. 2014 SiO2 and Si2O4
5 JH85 K. J. Jackson and H. C. Helgeson 1985 Sn minerals
2 OBIGT.7 J. M. Dick 2019 Tl(Gly) and Tl(Gly)2-: change Ti to Tl
SLOP16.2 E. L. Shock et al. 2016 Zn(Ac)3-: "Enthalpy changed to be compatible with the equation ΔH=ΔG+TΔS for the formation reaction from elements. See footnote h in table 2 of @SSH97."
SSH97.4 D. A. Sverjensky, E. L. Shock and H. C. Helgeson 1997 Zn-acetate complexes
SSWS97.5 E. L. Shock, D. C. Sassani et al. 1997 Zn+2 and Zn-hydroxide complexes
13 AT14 N. N. Akinfiev and B. R. Tagirov 2014 Zn+2 and complexes
DEW17.7 D. A. Sverjensky et al. 2017 acetate: revised January 26th, 2016; new a1 value from complexes and organics correlation
MS99 W. M. Murphy and E. L. Shock 1999 actinides
1 LCT17 A. R. Lowe, J. S. Cox and P. R. Tremaine 2017 adenine HKF parameters
2 SLOP16.4 E. L. Shock et al. 2016 adipic acid and n-dodecanoate: "Gibbs free energy corrected to be compatible with the equation ΔG=ΔH-TΔS for the formation reaction from elements. See footnote y in table 4 of @Sho95."
10 SS93 M. D. Schulte and E. L. Shock 1993 aldehydes
12 SR04 M. D. Schulte and K. L. Rogers 2004 alkane thiols
17 Ric08 L. Richard 2008 personal communication alkenes
10 DSM+97 J. D. Dale, E. L. Shock et al. 1997 alkylphenols
2 Ber90.1 R. G. Berman 1990 almandine and ilmenite: modified H and/or S
RH95.3 R. A. Robie and B. S. Hemingway 1995 almandine, dickite, glaucophane, grunerite, halloysite, pyrope: GHS and Cp at 25 °C
PH95 V. A. Pokrovskii and H. C. Helgeson 1995 aluminum species
38 DLH06 J. M. Dick, D. E. LaRowe and H. C. Helgeson 2006 amino acid, protein, and organic groups
20 HOKR98.1 H. C. Helgeson, C. E. Owens et al. 1998 amino acids
19 AH97b J. P. Amend and H. C. Helgeson 1997 amino acids GHS
27 DLH06.1 J. M. Dick, D. E. LaRowe and H. C. Helgeson 2006 amino acids HKF parameters
1 Ber90 R. G. Berman 1990 annite
1 SHD91.2 D. A. Sverjensky, J. J. Hemley and W. M. D'Angelo 1991 annite: G and H revision for K-bearing silicates [after @SHD91]
1 BDat17.1 D. A. Sverjensky et al. 2017 antigorite: "Oct. 21, 2016: Revised volume coefficients consistent with @HDR06 and @YIY+14 "
TS01.1 B. Tagirov and J. Schott 2001 aqueous Al species
17 TS01 B. Tagirov and J. Schott 2001 aqueous Al+3 and complexes
8 NA03.1 D. K. Nordstrom and D. G. Archer 2003 Arsenic thermodynamic data and environmental geochemistry. In Arsenic in Groundwater, eds. Welch and Stollenwerk, Kluwer aqueous As oxides and sulfides
Ste01 A. Stefansson 2001 aqueous H4SiO4
MS97.2 T. M. McCollom and E. L. Shock 1997 aqueous HCl
1 TZA97 B. R. Tagirov, A. V. Zotov and N. N. Akinfiev 2007 aqueous HCl
MWKH16 G. D. Miron et al. 2016 aqueous NaCl, NaOH, KCl, KOH, and HCl based on new conductance experiments
AS04 J. Apps and N. Spycher 2004 Data qualification for thermodynamic data used to support THC calculations. Bechtel SAIC Company, LLC. ANL-NBS-HS-000043 REV 00 (DOC.20041118.0004) aqueous SiO2
231 SSWS97 E. L. Shock, D. C. Sassani et al. 1997 aqueous ions and hydroxide complexes
3 PS01.1 A. V. Plyasunov and E. L. Shock 2001 aqueous nonelectrolytes (Ar, Xe, and CO2)
8 PS01 A. V. Plyasunov and E. L. Shock 2001 aqueous nonelectrolytes (organic species)
MWKL17 G. D. Miron et al. 2017 aqueous species in the system Ca-Mg-Na-K-Al-Si-O-H-C-Cl
PB82 L. N. Plummer and E. Busenberg 1982 aragonite and calcite
1 FDM+14.1 S. Facq et al. 2014 aragonite; source of data: `berman.dat`
SSWS97.3 E. L. Shock, D. C. Sassani et al. 1997 arsenate and arsenite species
3 PPB+08 E. Perfetti et al. 2008 arsenopyrite, loellingite, and westerveldite
2 ZZX+05 Y. Zhu et al. 2005 barium arsenate and barium hydrogen arsenate: G
1 HRA91 B. S. Hemingway et al. 1991 boehmite
2 PK70 L. B. Pankratz and E. G. King 1970 bornite and chalcopyrite
1 RH95.6 R. A. Robie and B. S. Hemingway 1995 bromellite (melting temperature and G and H not in SUPCRT92)
10 AP01 J. P. Amend and A. V. Plyasunov 2001 carbohydrates
2 Sho93.1 E. L. Shock 1993 carbon monoxide and ethylene
77 Sho95 E. L. Shock 1995 carboxylic acids
2 HDR+24 B. P. von der Heyden et al. 2024 carrollite
3 PMW87 L. B. Pankratz, A. D. Mah and S. W. Watson 1987 cattierite, linnaeite, and Co-pentlandite
1 RA87 E. J. Reardon and D. K. Armstrong 1987 celestite GHS
1 HDNB78.2 H. C. Helgeson, J. M. Delany et al. 1978 celestite V and Cp parameters
2 OBIGT.4 J. M. Dick 2017 charge of NpO2(Oxal), La(Succ)+, NH4(Succ)-, and NpO2(Succ) as listed by @PSK99
36 Kit15 N. Kitadai 2015 charged amino acids
8 Kit15.1 N. Kitadai 2015 charged amino acids GHS (Arg+, Arg-, Asp-, Glu-, His+, Lys+, Lys-, and Tyr-)
1 Pan70 L. B. Pankratz 1970 chlorargyrite
1 RHF78 R. A. Robie, B. S. Hemingway and J. R. Fisher 1978 chlorargyrite
6 HS99 J. R. Haas and E. L. Shock 1998 chloroethylene species
4 LH06a.1 D. E. LaRowe and H. C. Helgeson 2006 citric acid and citrate
22 CS16 P. A. Canovas III and E. L. Shock 2016 citric acid cycle metabolites
4 CS16.1 P. A. Canovas III and E. L. Shock 2016 citric acid species HKF a1--a4 parameters
249 HSS95 J. R. Haas, E. L. Shock and D. C. Sassani 1995 complexes of rare earth elements
3 MNM+06 J. Majzlan, A. Navrotsky et al. 2006 coquimbite, ferricopiapite, and rhomboclase
1 PAB+14 G. S. Pokrovski, N. N. Akinfiev et al., 2014 2014 corrected H of AuHS
SLOP07.1 E. L. Shock et al. 2007 corrected charge of Pu(Oxal)+2
MA10 L. Marini and M. Accornero 2010 corrected values
2 VPT01 O. Vidal, T. Parra and F. Trotet 2001 daphnite and Mg-amesite
SLOP98.2 E. L. Shock et al. 1998 daphnite; "Gf and Hf from @SS93a TMM"
2 JUN92 C. de Capitani 1992 data as listed in `JUN92.bs` data file
4 ZZL+16 K. Zimmer et al. 2016 data listed in spronsbl.dat
1 ZZL+16.3 K. Zimmer et al. 2016 dawsonite GHS
1 RH95.2 R. A. Robie and B. S. Hemingway 1995 dawsonite: Cp coefficients corrected in @TKSS14; Cp value at 25 °C from @BPAH07, citing @FSR76
3 OBIGT.9 J. M. Dick 2021 diaminopimelic acid, putrescine and spermidine: parameters recalculated to account for a missing [-CH2NH2] group in the group additivity equations
LRB09 K. H. Lemke, R. J. Rosenbauer and D. K. Bird 2009 diglycine and diketopiperazine
DEW17.11 D. A. Sverjensky et al. 2017 diglycine: Jamie & Dimitri fit to exptl Cp(T) and pred. a1-a4; delGf and S from fitting logK dimerisation values from @LRB09
1 Sho92.1 E. L. Shock 1992 diketopiperazine GHS
DEW17.12 D. A. Sverjensky et al. 2017 diketopiperazine: Jamie & Dimitri fit delGf and S from to logK dimerisation values from @LRB09; pred. a1-a4
1 ST97.1 D. Shvedov and P. R. Tremaine 1997 dimethylamine HKF parameters
6 LA19 D. E. LaRowe and J. P. Amend 2019 dimethylamine, trimethylamine, resorcinol, phloroglucinol, cyclohexane carboxylate, and cyclohexane carboxylic acid
1 ST97 D. Shvedov and P. R. Tremaine 1997 dimethylammonium chloride HKF parameters
6 DSM+97.2 J. D. Dale, E. L. Shock et al. 1997 dimethylphenol isomers
AD03.2 N. N. Akinfiev and L. W. Diamond 2003 dissolved gas species; parameters estimated from standard-state properties at 25 ° C
AD03.1 N. N. Akinfiev and L. W. Diamond 2003 dissolved gas species; parameters estimated from the experimental Henry's constant
2 Sho93 E. L. Shock 1993 ethylacetate and acetamide
15 LA16 D. E. LaRowe and J. P. Amend 2016 fatty acids, saccharides, and other species
1 Pol90 D. A. Polya 1990 Trans. Inst. Min. Metall. 99, B120-B124 ferberite G, S and Cp (Cp coefficients multiplied by 4.184 to convert to J, as listed in @WS00, but who give a 2nd term that is off by a factor of 10). Cp at 25 °C is from @LW74.
1 Hel85 H. C. Helgeson 1985 ferrosilite and siderite
DEW17.37 D. A. Sverjensky et al. 2017 fit to Raman speciation and quartz solubility data
RH95.4 R. A. Robie and B. S. Hemingway 1995 fluorphlogopite (Al/Si disordered) (G and H not in SUPCRT92)
1 SLOP16.3 E. L. Shock et al. 2016 formaldehyde: "Entropy corrected to be compatible with the equation ΔH=ΔG+TΔS for the formation reaction from elements. See footnote i in table 2 of @SS93."
DEW17.101 D. A. Sverjensky et al. 2017 formate and lactate: revised with new predicted a1 for ions
15 Kel60 K. K. Kelley 1960 gases Cp
17 WEP+82 D. D. Wagman, W. H. Evans et al. 1982 gases GHS
1 RHF78.3 R. A. Robie, B. S. Hemingway and J. R. Fisher 1978 gibbsite GHS
2 Eva90 B. W. Evans 1990 glaucophane and pumpellyite
ZW07 S. P. Ziemer and E. M. Woolley 2007 glutamate
HDM+94 A. W. Hakin et al. 1994 glutamic acid
4 Dic07 J. M. Dick 2007 Ph.D. Dissertation, Univ. of California glutathione, cystine, and cystine sidechain
DEW19.4 D. A. Sverjensky et al. 2019 glycinate: @AH97b for the G, H, S, Cp, V
3 DLH06.3 J. M. Dick, D. E. LaRowe and H. C. Helgeson 2006 glycine, [Gly], and [UPBB] HKF parameters
6 GKL02 R. N. Goldberg et al. 2002 glycine, diglycine, and triglycine (+1 and -1 ions) GHS
12 Kit14 N. Kitadai 2014 glycine, diglycine, and triglycine (zwitterions and ions); diketopiperazine, [Gly] and [UPBB] groups
3 MLS+03 J. Majzlan, B. E. Lang et al. 2003 goethite, lepidocrocite, and maghemite Cp
3 MGN03 J. Majzlan, K.-D. Grevel and A. Navrotsky 2003 goethite, lepidocrocite, and maghemite GHS
1 Kel60.3 K. K. Kelley 1960 gypsum Cp
13 RH95 R. A. Robie and B. S. Hemingway 1995 gypsum, manganese, manganosite, pyrolusite, bixbyite, hausmannite, huebneritecobalt, cobalt monoxide, guite, cattierite, linnaeite, wustite, willemite, and zinc
5 DS10 J. Delgado Martin and A. Soler i Gil 2010 hedenbergite, andradite, ferro-actinolite, grunerite, and ilvaite
3 SLOP16.7 E. L. Shock et al. 2016 hexanol, heptanol, and octanol: "Minor differences in Gibbs energy, entropy, ω, a1, a2, a3, a4 and c1 values compared to @SH90."
10 SLOP07.2 E. L. Shock et al. 2007 high-temperature HKF parameters from @AP01
1 LX20 Liu and Xiao 2020 huebnerite Cp
5 TSD97 Y. Tardy, R. Schaul, J. Duplay 1997 humic acid, microflora, and plants
2 RH95.1 R. A. Robie and B. S. Hemingway 1995 hydrogen fluoride and hydrogen chloride
1 MSB+04 J. Majzlan, R. Stevens et al. 2004 hydronium jarosite
14 SHS89 E. L. Shock, H. C. Helgeson and D. A. Sverjensky 1989 inorganic neutral species
57 SH88 E. L. Shock and H. C. Helgeson 1988 ionic species
HS19 F. Huang and D. A. Sverjensky 2019 ions and metal complexes
4 RHF78.2 R. A. Robie, B. S. Hemingway and J. R. Fisher 1978 iron
1 Kel60.2 K. K. Kelley 1960 iron Cp
DEW17.22 D. A. Sverjensky et al. 2017 isobutane: G, H, S, Cp, V from @SH90; a1 estimated with @SHA14; c2 estimated with a new hydrocarbon correlation.
3 SAJ00 R. E. Stoffregen, C. N. Alpers and J. L. Jambor 2000 jarosite, natroalunite, and natrojarosite
6 HRMNS09 H. C. Helgeson, L. Richard et al. 2009 kerogens (C128, C292, C406, C415, C515) and pyrobitumen (C54H42)
4 GM09 K.-D. Grevel and J. Majzlan 2009 kieserite, starkeyite, hexahydrite, and epsomite
RH95.5 R. A. Robie and B. S. Hemingway 1995 larnite (G and H not in SUPCRT92); Cp from @Kel60
1 PK95 V. B. Parker and I. L. Khodakovskii 1995 melanterite
28 SPD+19 B. St Clair et al. 2019 metal carbonate and bicarbonate complexes and FeSO4
92 SSH97 D. A. Sverjensky, E. L. Shock and H. C. Helgeson 1997 metal complexes
104 SK93 E. L. Shock and C. M. Koretsky 1993 metal-acetate complexes
MA07 L. Marini and M. Accornero 2007 metal-arsenate and metal-arsenite complexes; linked to properties of arsenate and arsenite from @SSWS97
43 AML10 M. Accornero, L. Marini and M. Lelli 2010 metal-chromate complexes
151 PSK99 P. Prapaipong, E. L. Shock and C. M. Koretsky 1999 metal-dicarboxylate complexes
22 AKAE19 M. R. Azadi et al. 2019 metal-glycinate complexes
226 SK95 E. L. Shock and C. M. Koretsky 1995 metal-organic acid complexes
1 LD12.2 D. E. LaRowe and J. M. Dick 2012 methionine GHS
1 DLH06.4 J. M. Dick, D. E. LaRowe and H. C. Helgeson 2006 methionine HKF parameters
1 LD12.3 D. E. LaRowe and J. M. Dick 2012 methionine sidechain GHS
2 HPT06 B. Hawrylak, R. Palepu and P. R. Tremaine 2006 methyldiethanolamine and methyldiethanolammonium chloride HKF parameters
58 HDNB78 H. C. Helgeson, J. M. Delany et al. 1978 minerals
65 Ber88 R. G. Berman 1988 minerals
1 SLOP16.5 E. L. Shock et al. 2016 n-octanoate: "Enthalpy corrected to be compatible with the equation ΔG=ΔH-TΔS for the formation reaction from elements. See footnote ab in table 4 of @Sho95."
157 LH06a D. E. LaRowe and H. C. Helgeson 2006 nucleic-acid bases, nucleosides, and nucleotides
81 RG11 L. Richard and X. Gaona 2011 organic iodine compounds
398 HOKR98 H. C. Helgeson, C. E. Owens et al. 1998 organic molecules and groups
542 RH98 L. Richard and H. C. Helgeson 1998 organic molecules and groups
47 SH90 E. L. Shock and H. C. Helgeson 1990 organic species
7 Sch10 M. Schulte 2010 organic sulfides
137 Ric01 L. Richard 2001 organic sulfur compounds
3 WV22 A. E. Williams-Jones and O. V. Vasyukova 2022 parameters listed here
14 RH95.7 R. A. Robie and B. S. Hemingway 1995 phase stability limit
6 DEH+13 J. M. Dick, K. A. Evans et al. 2013 phenanthrene and methylphenanthrene isomers
4 DSM+97.1 J. D. Dale, E. L. Shock et al. 1997 phenol, and cresol isomers
1 SHD91.1 D. A. Sverjensky, J. J. Hemley and W. M. D'Angelo 1991 phlogopite: H and S modified by @Ber90, followed by G and H revision for K-bearing silicates [after @SHD91]
41 SS98a D. C. Sassani and E. L. Shock 1998 platinum-group ions and complexes
15 SS98a.1 D. C. Sassani and E. L. Shock 1998 platinum-group solids
8 MVT01 L. Mercury, P. Vieillard. and Y. Tardy 2001 polymorphs of ice
DEW17.34 D. A. Sverjensky et al. 2017 propane: @SH90 with new a1-a4 based on revised correlation to predict a1 in Sverjensky et al. (2013)
DEW17.35 D. A. Sverjensky et al. 2017 propanoate: Revised a1 from new delVn correlation for -1 ions
2 LH06b.1 D. E. LaRowe and H. C. Helgeson 2006 pyridine and piperidine
20 OBIGT.6 J. M. Dick 2019 recalculated values of Cp (those in @AKAE19 appear to be calculated using wrong sign on ω) and enthalpy (using ΔG=ΔH-TΔS and the entropies of the elements)
DEW17.6 D. A. Sverjensky et al. 2017 revised volume increased in order that a1 of the complex is the sum of the a1 values of the ions
DEW17.4 D. A. Sverjensky et al. 2017 revised with a1 equal to the sum of the ions
DEW17.2 D. A. Sverjensky et al. 2017 revised with new predicted a1 for cations
DEW17.3 D. A. Sverjensky et al. 2017 revised with new predicted a1 for complex species
DEW17.1 D. A. Sverjensky et al. 2017 revised with new predicted a1 for ions
SHA14.1 D. A. Sverjensky et al. 2014 revisions for AlO2- and HAlO2
BH83 T. S. Bowers and H. C. Helgeson 1983 rutile
RHF78.4 R. A. Robie, B. S. Hemingway and J. R. Fisher 1978 rutile and titanite
1 LXW21.1 X. Liu, C. Xiao and Y. Wang 2021 scheelite Cp
2 WS00 S. A. Wood and I. M. Samson 2000 scheelite and ferberite; GHS and V of scheelite and V of ferberite are from @RHF78.
2 LMR06 D. Langmuir et al. 2006 scorodite and amorphous ferric arsenate: G
3 AS01.1 J. P. Amend and E. L. Shock 2001 selenium and molybdenite
1 VGT92 O. Vidal, B. Goffé and T. Theye 1992 sudoite
3 MS97.1 T. M. McCollom and E. L. Shock 1997 sulfur
SPRONS92.1 H. C. Helgeson et al. 1992 sprons92.dat computer data file titanite: @BH83 + "Gibbs free energies and enthalpies were corrected to be consistent with updated values of Gibbs free energies of Ca2+ and CO32- [@SH88] together with the solubilities of calcite and aragonite reported by @PB82 "
DEW17.39 D. A. Sverjensky et al. 2017 toluene: @PS01 with new a1 to a4 predicted with revised a1 consistent with @SHA14
1 DLH06.5 J. M. Dick, D. E. LaRowe and H. C. Helgeson 2006 triglycine Cp, V, and HKF c1, c2, ω parameters
1 PD15 G. S. Pokrovski and J. Dubessy 2015 trisulfur radical ion
4 LD12.1 D. E. LaRowe and J. M. Dick 2012 updated and corrected parameters for cysteine, glycine, leucine, and methionine
1 SSB97.1 E. L. Shock, D. C. Sassani and H. Betz 1997 uraninite
15 SSB97 E. L. Shock, D. C. Sassani and H. Betz 1997 uranium species
DEW17.40 D. A. Sverjensky et al. 2017 urea: Revised Feb. 2015 by Dimitri: c1, c2, and omega from PS01 based on Stokes (1967) data; V from Cabani et al. (1981) with a1-a4 predicted.
25 SH88.1 E. L. Shock and H. C. Helgeson 1988 values of GHS
1 BKK77 I. Barin, O. Knacke and O. Kubaschewski 1977 willemite Cp
2 SSWS97.1 E. L. Shock, D. C. Sassani et al. 1997 zincite and litharge
1 SLOP98.1 E. L. Shock et al. 1998 zincite and litharge; "These data were used in @SSWS97, but were not tabulated in the paper."
4 Got04 M. Gottschalk 2004 zoisite, clinozoisite, and epidote